Binary Black Hole Simulations

- Working towards the “first last orbit”
 \[t_{\text{numerical}} = 7M, 30M, 100M, \ldots \]
 '97 '99 '02 \ldots
Black holes are out there

Gas Disk in Nucleus of Active Galaxy M87

Hubble Space Telescope
Wide Field Planetary Camera 2
Livingston Observatory, LA

Center for Gravitational Physics and Geometry, Penn State http://gravity.psu.edu
GEO600 near Hannover

Center for Gravitational Physics and Geometry, Penn State http://gravity.psu.edu
Numerical relativity for binary black holes: cutting edge 2003

| Initial data | QE effective potential: Cook; Baker et al
| | QE conformal thin sandwich: GGB, PCT; PN data: TBCD |
| Evolution | BSSN; Hyperbolic: KST, …; resolving constraints
| System | K freezing, Gamma freezing; ell/par/hyp; corotating coords.
| Gauge | radiative; AMR; characteristics; constraints
| Outer B. | punctures; simple excision; excision in adapted coordinates with charact.; excision for moving black holes
| Inner B. | Various AHF; EHF: (GC;) Diener; Matzner et al.
| Analysis | Moncrief; Lazarus interface to Teukolsky equation
| Horizon | Various AHF; EHF: (GC;) Diener; Matzner et al.
| Waves | AEI-Cactus, Maya-Cactus, BAM, Illinois, Texas: finite differencing, MPI
| Infrastructure | Cornell/Caltech, Meudon: pseudo-spectral
| | FMR, AMR: Cactus, NASA, Choptuik et al.; multidomain in p.s. multigrid elliptic solver
| | fish-eye; p.s. with radially adapted coordinates |

Center for Gravitational Physics and Geometry, Penn State
http://gravity.psu.edu
Numerical relativity for binary black holes: cutting edge 2003

<table>
<thead>
<tr>
<th>Initial data</th>
<th>Conformal transverse traceless or conformal thin sandwich; quasi-equilibrium by effective potential method, helical Killing vector; post-Newtonian; conformal flatness, maximal slice, boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>Gauge</td>
<td></td>
</tr>
<tr>
<td>Outer B.</td>
<td></td>
</tr>
<tr>
<td>Inner B.</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>Horizon</td>
<td></td>
</tr>
<tr>
<td>Waves</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Numerical convenience → astrophysical relevance</td>
</tr>
<tr>
<td></td>
<td>• Artificial components in initial data? Just let it evolve for 5!</td>
</tr>
<tr>
<td></td>
<td>• Gap between “reliable” data and evolution capabilities?</td>
</tr>
<tr>
<td></td>
<td>• How smooth is the transition to plunge?</td>
</tr>
<tr>
<td></td>
<td>• QE evolutions</td>
</tr>
<tr>
<td></td>
<td>• All waves from puncture data ?!</td>
</tr>
<tr>
<td></td>
<td>• Don’t focus too much on ISCO.</td>
</tr>
</tbody>
</table>

Center for Gravitational Physics and Geometry, Penn State
http://gravity.psu.edu
Numerical relativity for binary black holes: cutting edge 2003

Initial data	BSSN; Hyperbolic: KST, …; resolving constraints K freezing, Gamma freezing; ell/par/hyp; corotating coords. radiative; AMR; characteristics; constraints punctures; simple excision; excision in adapted coordinates with charact.; excision for moving black holes			
Evolution	• Intelligently engineered systems (BSSN, …) versus/complementing/being slowly replaced by ?? Hyperbolic systems (KST, …) at least one good reason: boundaries			
System	Analysis	Horizon	Waves	Infrastructure
Gauge	• Dynamic gauges bring break-through for 1BH and head-on.			
Alcubierre, Brügmann, Diener, Koppitz, Pollney, Seidel, Takahashi 03

- puncture evolutions without excision
- shift draws points from inner AF region reducing grid-stretch.
- lapse and shift together essentially freeze the evolution
- not minimal distortion, not elliptic
- no excision
Head-on collision: Waveform to $t=5200M$
maximal slicing, octant (!)

Brill-Lindquist data
equal mass, octant
Cook/Baumgarte ISCO separation
maximal slicing
Gamma freezing shift
outer boundary: 12.3, fish-eye 26.0
no excision, no Lazarus
Numerical relativity for binary black holes: cutting edge 2003

| Initial data | BSSN; Hyperbolic: KST, …; resolving constraints
K freezing, Gamma freezing; ell/par/hyp; corotating coords.
radiative; AMR; characteristics; constraints
punctures; simple excision; excision in adapted coordinates with
charact.; excision for moving black holes |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution System</td>
<td></td>
</tr>
</tbody>
</table>
Gauge
Outer B.
Inner B. |
| Analysis Horizon |
Waves
Infrastructure |
|
• Intelligently engineered systems (BSSN …)
 versus/complementing/being slowly replaced by ??
 Hyperbolic systems (KST …)
 └
 at least one good reason: boundaries |
|
• Dynamic gauges bring break-through for 1BH, head-on,
 but what is needed for orbits?
 • Corotating coordinates may be essential
 • Outer boundaries are becoming more of a problem (good!)
 • Inner boundaries: punctures, excision, or *moving excision*?
 • Constraint conservation? Too many new constraints? |

Center for Gravitational Physics and Geometry, Penn State
http://gravity.psu.edu
Numerical relativity for binary black holes: cutting edge 2003

Initial data
Various AHF; EHF: (GC; Diener; Matzner et al. Moncrief; Lazarus interface to Teukolsky equation

Evolution
System
Gauge
Outer B.
Inner B.

• Apparent horizon finding “essentially” solved
• Event horizon finding: lost, now back!

Analysis
Horizon
Waves

• Waves – our final product!!
• State of the art is Lazarus

Infrastructure
Head-on collision, 80M, convergence in the waveform, AEI03

Center for Gravitational Physics and Geometry, Penn State
http://gravity.psu.edu
First waveform for the plunge from an ISCO (Lazarus)

Baker, Brügmann, Campanelli, Lousto, Takahashi ’01: ISCO data
Baker, Brügmann, Campanelli, Lousto ’00: head-on (Misner) data
Numerical relativity for binary black holes: cutting edge 2003

Initial data
Various AHF; EHF: (GC;) Diener; Matzner et al.
Moncrief; Lazarus interface to Teukolsky equation

Evolution
System
Gauge
Outer B.
Inner B.

Analysis
Horizon
Waves

Infrastructure

- Apparent horizon finding “essentially” solved
- Event horizon finding: lost, now back!
- Waves – our final product!!
- State of the art is Lazarus
- There are too few groups focussing on
 - producing waves with current tech.
 - translation to world of data analysis

- Really?! Isn’t there still a huge gap between wish and fact?
 Yes and no.
Summary

- Has there been progress since 1993? YES.
- Will there be progress by 2013? OF COURSE.
- **Think about waves! Fund groups with critical mass!**

 See Teukolsky Report

1995: Schwarzschild in 3d
1999: Grazing Collision
2003: 50M for plunge from ISCO
 Psi4 in x-y plane
 lapse based excision mask
 corotating coordinates
 AEI/PSU/UNAM