RENORMALIZATION FOR SPIN FOAM MODELS OF QUANTUM GRAVITY

Robert Deckl
CPT, Marseille

gr-qc/0212047
CONVENTIONAL RENORMALIZATION

- prototype: lattice models

\[\begin{array}{c}
\text{rescale} \\
\hline
a \quad \sim \quad \frac{\text{discretization}}{\text{determined by}} \\
\hline
a' \end{array} \]

- changes of discretization are elements \(g \) of the group \(G \) of scale transformations
- observables \(\Theta(a, \tau) \) depend on length \(a \) and coupling constants \(\tau \)

RENORMALIZATION PROBLEM:

- tune couplings \(\tau \) such that they compensate the change of observables induced by a change \(g \) of discretization

\[\Theta(g \cdot a, g \cdot \tau) = \Theta(a, \tau) \]

- solutions exhibit renormalization group flow (orbits of \(G \) in \(\Lambda \))

\[\begin{array}{c}
\text{IR fixed point} \\
\hline
\text{UV fixed} \end{array} \]

arrows point in direction of increasing a (or decreasing \(\tau \))
consider model defined on arbitrary
discretization \(\lambda \) (no background, no length scales)

\[
\begin{align*}
\text{discretizations} & \quad \text{can change locally} \\
\end{align*}
\]

changes \(g \) of discretizations are
pairs \((a, a')\) of discretizations
\(\rightarrow\) these are elements of a groupoid \(G \)

need model with \underline{local couplings} \(\lambda \) to tune,
i.e. \(\lambda \) represents an assignment of couplings
to elements of a discretization \(a \)

observables \(\Theta(a, \lambda) \) depend on discretization \(a \)
and couplings \(\lambda \)

\[
\text{RENORMALIZATION PROBLEM:}
\]

\(\rightarrow \) find action of groupoid \(G \) on spaces
\(\Lambda(a) \) of couplings such that:

\[
\Theta(g \cdot \lambda, g \cdot \lambda') = \Theta(a, \lambda')
\]

[\text{note: if } g = (a, a') \text{ then } g : \Lambda(a) \rightarrow \Lambda(a')]

\(\uparrow \) action often only makes sense if \(g \) is
\underline{coarsening} as local couplings cannot
be "created" out of nothing
The Cellular Moves

Consider compact topological manifolds and their cellular decompositions, i.e. decompositions as CW-complexes.

In dimension 1 define a set of n local changes of cellular decomposition, called the cellular moves.

In dimension 3:

• 3-move

\[
\begin{array}{c}
\text{3-cell } \sigma^3 := \sigma_0 \cup \sigma_1 \cup \sigma_2 \cup \sigma_3
\end{array}
\]

• 2-move

\[
\begin{array}{c}
\text{3-cell } \sigma^2 := \sigma_0 \cup \sigma_1 \cup \sigma_2
\end{array}
\]

• 1-move

\[
\begin{array}{c}
\text{0-cell } \nu
\end{array}
\]

Completeness conjecture:

Any two cellular decompositions of a compact orientable manifold are related (up to cellular homeomorphism) by a sequence of cellular moves and their inverses.
AN "INTERPOLATING" MODEL

- start with BC model:
 - is not discretization independent
 - has no (local) parameters
 - dominated by trivial representations for "natural" choice of weights
 - wrong state space on boundary?

- view BC model as BF theory with projection operators inserted per edge & face

- main idea: interpolate between no projection (BF) and total projection (BC)
 + take heat kernel operator from LGT

pictorially:

identity \[\lambda \rightarrow 0 \]

full projection \[\lambda \rightarrow \infty \]

BF \[\sim e^{-\lambda} \]

BC \[\text{quadratic Casimir of SU(2)} \]

\[\text{local couplings } \lambda \text{ (positive real number)} \]

\[\text{recover LQG type state spaces} \]

BF theory is UV-fixed point

BC model is "like" IR-fixed point