Dynamical Horizons: The First Law

Stephen Fairhurst (U of Alberta)
with Ivan Booth (MUN)

Outline
1) Introduction: The First Law
2) Dynamical Horizons
3) Perturbatively Non-Isolated Horizons
4) Dynamical First Law
5) Discussion
The First Law

\[\delta M = \frac{K \delta a + \Pi \delta J + \Phi \delta Q}{\delta \Pi} \]

What do the \(\delta \)'s mean?

Isolated horizons - Black hole mechanics.

\(\delta \) is a phase space variation between black holes with similar area \(a \), angular momentum \(J \) and charge \(Q \).

Physical Process version

\(\delta \) is the change in the parameters as an infinitesimal amount of matter falls in.

The horizon remains null.

Can we obtain a truly dynamical version of the first law? We will need dynamical horizons.
Dynamical Horizons

3 dimensional surfaces foliated by marginally trapped 2-surfaces.

\[\Rightarrow \Theta_{(b)} = 0. \]

Also require \(\Theta_{(n)} < 0 \) and \(L_n \Theta_{(b)} < 0 \).

With null energy condition, this implies the horizon is null or spacelike.

\[l \cdot n = -1 \]

Define

\[\xi^a = \ell^a - C n^a \quad \text{tangent to horizon} \]

\[\tau^a = \ell^a + C n^a \quad \text{normal to horizon} \]

\[q_{ab} \quad \text{- 2 metric on horizon slice} \]

Then if \(C = 0 \) horizon is null

\(C > 0 \) horizon is spacelike

An immediate consequence is:

Local Second Law

\[L_\xi \sqrt{q} = -2C \Theta_{(n)} \sqrt{q} \geq 0 \]

\(\Rightarrow \) Area of horizon is non-decreasing.
Quantities of Interest

\[\omega_a = - n_b \nabla_a l^b \]

- Surface gravity: \(\kappa_5 = - 5^a n_b \nabla_a l^b = 5^a \omega_a \)
 - reduces to standard definition on IH

- Angular momentum: \(J_a = \frac{\sqrt{q}}{8\pi} \hat{q}_{a b} \omega_b \)
 - reduces to standard definition on IH
 - agrees with other definitions (at least if \(\Phi^a \)
 is a symmetry).

\(^{(\ell)} \sigma_{ab}, \quad ^{(n)} \sigma_{ab} \) - Shears along \(\ell \) and \(n \).

Flux Law: \(X^a = x_0 \xi^a + \hat{x}^a \). Comes from \(L_x \Theta_{(\ell)} = 0 \)

\[
\int d^2x \left\{ \frac{\kappa_5}{8\pi} L_x \sqrt{q} + \hat{x}^a L_x J_a \right\}
\]

\[
= \int d^2x \left\{ \frac{\hat{q}}{8\pi} T_{ab} X^a \xi^b + \frac{\sqrt{q}}{8\pi} \left[\epsilon \xi^a \xi^b - C^2 |\sigma_{(n)}|^2 \right] \right\}
\]

\[
+ \int d^2x \frac{c}{8\pi} \left\{ 2 \sqrt{q} L_x \Theta_{(n)} - \Theta_{(n)} L_x \sqrt{q} \right\}
\]

(Note: we have taken \(5^a d_a \nu = 1 \))

\[\kappa \text{ foliation parameter} \]
Perturbatively Non-Isolated Horizons

We would not expect to obtain a first law for a general dynamical horizon.

As in thermodynamics, we will obtain a first law only if our system is "quasistationary."

First, we fix the normalization of \(\mathcal{E} \) (and \(l^a \)) by requiring that:

\[
\int K_\Sigma \sqrt{q} \, d^2 x = \frac{1}{2F} \cdot a
\]

in the non-rotating case.

Then require horizon is "perturbatively expanding", i.e.

\[
\frac{\mathcal{L}_a a - E}{r} \to \text{Small parameter.}
\]

and \(w_a \) is slowly varying, i.e.

\[
\mathcal{L}_a w_a - \frac{E w_a}{r}
\]

It then follows that:

\[
C, \, \sigma (c), \, \nabla a K_\Sigma
\]

\[
T_{ab} l^a l^b, \, T_{ab} l^a \tilde{\partial} b
\]

\(\Psi_0, \, \Psi \)

are proportional to \(\mathcal{E} \).
The dynamical 1st Law (Non-rotating \(\Rightarrow X^a = 3^a \))

If the horizon is perturbatively non-isolated, then the flux law simplifies greatly. At order \(E \),

\[
\frac{K_3 \alpha}{8 \pi G} = \int d^2 \alpha \ 	ext{Tab} \ l^a l^b \sqrt{q}
\]

Consider, e.g., a scalar field:

\[
\text{Tab} = (\nabla_a \phi)(\nabla_b \phi) - \frac{1}{2} g_{ab} [(\nabla \phi)^2 + m^2 \phi^2]
\]

Now, \(\text{Tab} l^a l^b \sim E \rightarrow (l_\cdot \nabla \phi) \sim E \)

so that \(\text{Tab} l^a l^b \sim E^2 \) (Similar for \(E + M \)).

Thus \(\alpha \) vanishes (to order \(E^2 \)) and local second law \(\Rightarrow L_\Sigma \sqrt{q} \) and hence \(C \) must also.

Now, we expand the flux law to order \(E^2 \) to obtain:

\[
\frac{1}{8 \pi G} K_3 \alpha = \int d^2 \alpha \sqrt{q} \ 	ext{Tab} \ l^a l^b + \frac{1}{8 \pi G} \int d^2 \alpha \sqrt{q} \ |\sigma(e)|^2
\]

\(\text{Matter flux} \quad \text{Gravity flux} \)

Note, if \(K_3 \) is appropriately normalized (e.g. \(K_3 = \frac{1}{2 \pi} \)), then this can be trivially integrated to get \(E \).
Inclusion & Rotation

To discuss rotation, we need an approximately axisymmetric horizon:

There exists a vector field \(\Phi^a \), where \(L^a_3 \Phi^a = 0 \), such that \(\Phi^a \) is an approximate symmetry of the horizon in the sense that:

\[
L^a_0 \Phi^a, \quad L^a \omega^a, \quad L^a \Theta^a \text{ vanish to leading order in } \varepsilon.
\]

Then, we can evaluate the flux law for \(X^a = \Phi^a - \mathcal{R} \Phi^a \) and obtain:

\[
\frac{1}{S^T G} \kappa_3 \dot{a} + \mathcal{R} \dot{J}_\Phi = \int d^2 x \sqrt{q} \left(T^{ab} \left(e^a e^b - \mathcal{R} T^{ab} \Phi^a \Phi^b \right) \right)
\]

where \(J_\Phi = \int d^2 x \Phi^a J_a \).

Provided \(\kappa_3, \mathcal{R} \) are functions of \(a, J \) only (as in IH) this can be integrated to obtain a change in energy.
Conclusions

- We can generalize the notions of surface gravity and angular momentum to dynamic horizons.
- By requiring a and w to be slowly varying, we obtain perturbatively non-isolated horizons.
- In this case, we obtain a truly dynamical 1st law with fluxes of matter and gravity.

Directions

- Inclusion of gravitational flux in rotating case.
- Black holes with charge.
- May be useful in examining how charge horizons settle down to isolation.
- Hawking radiation.