THE GENERAL BOUNDARY FORMULATION OF QUANTUM THEORY

Robert Oeckl
Instituto de Matemáticas
UNAM, Morelia

see
hep-th/0509122
hep-th/0509123
and previous work
THE GENERAL BOUNDARY FORMULATION

on axiomatic level

QM + TQFT = general boundary QM

- Standard QM
- Curved space-time QM
- General boundary QM

- States at time instances
- Evolution in time
- Space-like hypersurfaces carry states
- Evolution in foliation
- Boundary of general space-time region carries generalized states

- Associate generalized state spaces to boundaries of regions of space-time
- Associate "transition" amplitudes to regions themselves

Features

- Avoid interpretational problems of combining GR with standard QM (notably problem of time)
- Preserve standard QM where applicable
- Local description of measurement process
- Distinction between "in" and "out" states and between "preparation" and "observation" disappears
- Interpretation: "collapse of wavefunction" is delocalized in time
Extending Quantum Mechanics

<table>
<thead>
<tr>
<th></th>
<th>Standard QM</th>
<th>General Boundary QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Structure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Classical time variable
- Time intervals & instants of time |
- Spacetime regions & boundary hypersurfaces
- (Various possibilities: topological, diff., metric, etc.) |
| **States** | One state space \mathcal{H} | A state space \mathcal{H}_Σ for each oriented hypersurface Σ |
| **Dynamics** | Time interval $[t_1, t_2]$
- Transition amplitude $\langle \Psi_f | \Psi_i \rangle$
- Time evolution operator $\hat{U}(t_2 - t_1)$ | Spacetime region M
- General amplitude $S_M(\Sigma)$
- State in boundary state space Ψ_{Σ} |
| **Probabilities** | $|\langle \Psi_f | \Psi_i \rangle|^2$
- Probability to observe η if Ψ was prepared | See later |
| **Locality/Globality** |
- Physical states extend over all of space, "whole universe"
- Need decoupling of systems for local description |
- Physical processes are described manifestly locally (spacetime regions)
- Physics (including spacetime structure) outside region irrelevant |
| **Other Features** |
- Crossing symmetry of S-matrix "surprising"
- Many possible interpretations:
 - Collapse at time of measurement
 - Many worlds |
- Crossing symmetry of S-matrix manifest |
RECOVERING STANDARD QM

- Due to time-translation symmetry \(\mathcal{H}_{\Sigma_1} \cong \mathcal{H}_{\Sigma_2} \)
 → the standard state space of QM

- Amplitude map \(\mathcal{S}_M : \mathcal{H}_{\Sigma_1} \otimes \mathcal{H}_{\Sigma_2} \rightarrow \mathbb{C} \)
 induces \(\mathcal{S}_M : \mathcal{H}_{\Sigma_1} \rightarrow \mathcal{H}_{\Sigma_2} \)
 this is ordinary (finite) time-evolution operator
 \[\mathcal{S}_M (\psi \otimes \phi) = \langle \phi | \mathcal{S}_M | \psi \rangle \]

- \((T46)\) ensures unitarity

- \((T5)\) ensures consistency of time composition
 \[\mathcal{S}[t_2, t_3] \circ \mathcal{S}[t_1, t_2] = \mathcal{S}[t_1, t_3] \]
STANDARD PROBABILITY INTERPRETATION

Transition amplitudes give rise to conditional probabilities

Ex. 1: "standard case" of ket states
- initial state \(\psi \in \mathcal{H} \) at time \(t_1 \)
- final state \(\eta \in \mathcal{H}^* \) at time \(t_2 \)

\[
P(\eta | \psi) = |\langle \eta | \psi \rangle|^2
\]

probability of observing \(\eta \) at time \(t_2 \) given that \(\psi \) was prepared at time \(t_1 \)

completeness: on-basis \(\xi_\eta \xi_\eta \) of \(\mathcal{H}^* \)
\[
\sum_{\eta \in \xi_\eta \xi_\eta} P(\eta | \psi) = 1
\]

Ex. 2: given additional knowledge about outcome encoded in closed subspace \(\mathcal{S}_F \subseteq \mathcal{H}^* \)
(e.g. selected measurements)

given on-basis \(\xi_\eta \xi_\eta \) of \(\mathcal{S}_F \)
\[
P(\eta | \psi, \mathcal{S}_F) = \frac{P(\eta | \psi)}{P(\mathcal{S}_F | \psi)} = \frac{|\langle \eta | \psi \rangle|^2}{\sum_{\xi_\eta \xi_\eta} |\langle \eta | \psi \rangle|^2}
\]

probability of observing \(\eta \) given that \(\psi \) was prepared and that the outcome is in \(\mathcal{S}_F \)
GENERALIZED PROBABILITY INTERPRETATION

consider spacetime region M with boundary Σ

- "knowledge" about experiment encoded in closed subspace $S \subset \mathcal{H}_\Sigma$
- "question" encoded in closed subspace $A \in S$

given ON-basis $\{ |i\rangle | i \in I \}$ of S
and ON-basis $\{ |i\rangle | i \in J \}$ of A

$$P(A|S) = \frac{\left| \langle i | S \right|^2}{\sum_{i \in I} \left| \langle i | S \right|^2}$$

by construction:
$$0 \leq P(A|S) \leq 1$$

probability that measurement is described by A given that it is described by S

recovering the standard interpretation

Ex. 1: $\mathcal{H}_\Sigma = \mathcal{H}_\Sigma^1 \otimes \mathcal{H}_\Sigma^2 \cong \mathcal{H}_K \otimes \mathcal{H}_K$

- select $\gamma \in \mathcal{H}_\Sigma^1$ and set $S_\gamma := \{ |\xi\rangle \in \mathcal{H}_\Sigma^2 \mid \exists \eta \in \mathcal{H}_\Sigma^2 : |\xi\rangle = \gamma \otimes \eta \}$
- denote by $\{ |\gamma \otimes \eta_i\rangle \}_i$ an ON-basis of S_γ
- set $A_{\gamma \otimes \eta_i} := \{ |\xi\rangle \in \mathcal{H}_\xi \mid \exists \epsilon \in \mathcal{H}_\epsilon : |\xi\rangle = \eta \otimes \epsilon \}$

$$P(A_{\gamma \otimes \eta} | S_\gamma) = \frac{\left| \langle \gamma \otimes \eta | S_\gamma \right|^2}{\sum_{i \in I} \left| \langle \gamma \otimes \eta_i | S_\gamma \right|^2}$$

denominator turns out to be 1 due to (T4)

$$= \left| \langle \gamma | S_\gamma \right|^2$$

$$= P(\gamma | S_\gamma)$$

as required
QUANTIZATION

- **Schrödinger–Feynman approach**
 - Classical field theory
 - Configuration space K_Σ per hypersurface Σ
 - Schrödinger representation: state space on Σ
 $$\mathcal{H}_\Sigma = (C(K_\Sigma))$$ Hilbert space of L^2 functions on K_Σ
 - Feynman path integral: amplitude on region M
 $$S_M(\varphi) = \int_{K_\Sigma} \mathcal{D}\varphi\, \exp\left(-i\int_\Sigma S_{\text{action}}\right) \mathcal{Z}_M(\varphi)$$
 $$\mathcal{Z}_M(\varphi) = \int_{K_M} \mathcal{D}\varphi \exp\left(i\int_{M} S_{\text{action}}\right)$$
 - Integral over arbitrary configurations in M
 - Field propagator

- **Tomonaga–Schwinger approach**
 (for spacelike hypersurfaces: Tomonaga; Schwinger)
 - Generalize Schrödinger equation to evolution equation for arbitrary boundary hypersurfaces
 - Rovelli, Conrady; Doplicher

 region M \quad $\Sigma = \partial M$ \quad $s \in \Sigma$

 $$\frac{\delta \mathcal{Z}_M(\varphi)}{\delta \Sigma(s)} = \mathcal{H}(\varphi(s), \nabla \varphi(s), \frac{\delta}{\delta \Sigma(s)}) \mathcal{Z}_M(\varphi)$$

 - Hamiltonian
 - Density
 - Gradient of field within Σ

 Deform Σ at s along vector field normal to Σ in ambient spacetime
HYPERCYLINDER IN KLEIN-GORDON QFT

\[
M = B^3 \times \mathbb{R} \\
E = \partial M = S^2 \times \mathbb{R}
\]

\(\mathcal{F}_\Sigma\) is a Fock space of particles characterized by
- in- vs. out-going
- momentum quantum numbers \(p \in \mathbb{Z}\)

consider 1-1 scattering process

- knowledge / "preparation"

 1 particle in-going and 1 particle out-going,
 in-going particle has quantum number \(p\)

\[\mathcal{F}_p = \{ \left| \text{pin, rout} \right> : r \in \mathbb{R} \}\]

- question / "observation"

 same information + outgoing particle has quantum number \(q\)

\[\mathcal{F}_{pq} = \{ \left| \text{pin, rout} \right> : r \in \mathbb{R} \}\]

- probability:

\[
P(q|p) = \frac{\sum_{i \in \mathcal{F}_p} \left| \left. \psi_{pin, rout} \right| \left. \psi_{pin, rout} \right> \right|^2}{\sum_{i \in \mathcal{F}_p} \left| \left. \psi_{pin, rout} \right| \left. \psi_{pin, rout} \right> \right|^2}
\]
using spin foam and LQG techniques obtain "graviton 2-point function"
\[M = b^4 \quad \Xi = \partial M = 5^3 \]
\[\mathcal{G}_{\Xi}^{\alpha \beta \gamma \delta}(x, y) = \frac{1}{3} \mathcal{W} \left[\mathcal{G}_{\Xi}^{\alpha \beta}(x) \mathcal{G}_{\Xi}^{\gamma \delta}(y) \right] \]

suppose here is a sector of \(\mathcal{H}_{\Xi} \) that (approximately) corresponds to classical state \(q \) + gravitons
\[\mathcal{H}_{\Xi} = \mathcal{H}_{\Xi, q} \oplus \text{rest} \]
\[\mathcal{G}_{\Xi}^{\alpha \beta \gamma \delta}(x, y) = \mathcal{P} \left(\left| \mathcal{G}_{\Xi}^{\alpha \beta}(x) \mathcal{G}_{\Xi}^{\gamma \delta}(y) \right| \right) \]

amplitude of 2-particle state
\[\left| \mathcal{G}_{\Xi}^{\alpha \beta}(x) \mathcal{G}_{\Xi}^{\gamma \delta}(y) \right> \in \mathcal{H}_{\Xi, q} \]

and \(| \mathcal{G}_{\Xi}^{\alpha \beta \gamma \delta}(x, y) |^2 \) can be interpreted as (approximate) 1-1 graviton scattering probability