Computing the Lorentzian 10J Symbol

Joshua L. Willis
Abilene Christian University

with

Dan Christensen
U. of Western Ontario

11 August 2007
Outline of Talk

• Review computational challenges for Lorentzian spin foam models
• Summary of existing method for the tetrahedral network (6J)
• Recoupling Theory for $\text{SL}(2,\mathbb{C})$
• The analogue of the Christensen-Egan algorithm for the Lorentzian 10J
• First attempts at numerical implementation
Spin Foam Models of Quantum Gravity

• Assign partition function to 2-complexes in spacetime

\[Z = \sum \prod A_F(f) \prod A_E(e) \prod A_V(v) \]

• Would like to study numerically to investigate phase structure, semiclassical limit

• Definition involves a sum over labellings of 2-complexes, and possibly over different complexes as well.

• But evaluating summand is computationally hard for just one labeling, because the vertex amplitude \(A_V \) is hard to compute
Why are they computationally hard?

• For Riemannian models (\textit{Spin}(4) gauge group) efficient algorithm known that re-expresses 10J as a sum over 6J symbols (Racah coefficients).

• For Lorentzian models (\textit{SL}(2,\mathbb{C}) gauge group) no such efficient algorithm was known; 6J symbols themselves are hard.

• Why? They are defined by integrals that are \textit{high-dimensional} with \textit{oscillatory integrands}.

\[
6J = \int_{H^4} \prod_{i=1}^{4} dx_i \ K_{\rho_1}(x_1, x_2) \cdots K_{\rho_6}(x_3, x_4)
\]

\[
10J = \int_{H^5} \prod_{i=1}^{5} dx_i \ K_{\rho_1}(x_1, x_2) \cdots K_{\rho_{10}}(x_4, x_5)
\]

\[
K_\rho(x, y) = \frac{\sin (\rho r)}{\rho \sinh r} \quad r = d_{\text{hyp}}(x, y)
\]
A Better Algorithm for Lorentzian 6J

• Using group-theoretic techniques, can re-express the Lorentzian 6J as a sum of products of Clebsch-Gordan coefficients for SL(2,C). Analogous to similar formula for SU(2) Racah coefficients:

\[6J \propto \sum_{J} (2J + 1) C_{00}^{\rho_1} C_{00}^{\rho_5} C_{00}^{\rho_4} C_{00}^{\rho_6} C_{00}^{\rho_4} C_{00}^{\rho_3} C_{00}^{\rho_2} C_{00}^{\rho_5} C_{00}^{\rho_3} \]

• These coefficients can be calculated recursively; thus, very efficiently.
• Much more efficient than direct integration, but convergence can still require many terms.
• Can further speed convergence by using asymptotic form of Clebsch-Gordan coefficients (this is the hard part of both the derivation and coding).
Tet(1,1,1,1,1,1)

Vegas Monte-Carlo Integration

| Calls | Value | Time (sec) | |
|-------|--------------------|------------|
| 10^3 | 0.041267 ± 21.4% | 0.0070 | |
| 10^4 | 0.126242 ± 4.03% | 0.0430 | |
| 10^5 | 0.122350 ± 1.53% | 0.4309 | |
| 10^6 | 0.118190 ± 0.490% | 4.933 | |
| 10^7 | 0.117902 ± 0.192% | 69.99 | |
| 10^8 | 0.118459 ± 0.0532%| 436.6 | |

Summation Algorithm

| Terms | Value | Time (sec) | |
|-------|--------------------|------------|
| 10^2 | 0.118087292 | \approx 0.00002 | |
| 10^3 | 0.118283570 | \approx 0.0002 | |
| 10^4 | 0.118306260 | 0.002 | |
| 10^5 | 0.118299794 | 0.0200 | |
| 10^6 | 0.118300212 | 0.198 | |
| 10^7 | 0.118300200 | 1.98 | |
| 10^8 | 0.118300196 | 19.9 | |

Accelerated Summation Algorithm

| Terms | Value | Time (sec) | |
|-------|--------------------|------------|
| 10^2 | 0.1183001969 | \approx 0.0002 | |
| 10^3 | 0.1183001969 | \approx 0.002 | |
| 10^4 | 0.1183001969 | 0.0170 | |
Toward the 10J

• The reason for calculating the 6J is to use it in calculating the 10J, hoping that this method is more efficient or more accurate than the direct integration.

• To do this, we need to use recoupling theory for SL(2,C) in the same way that the Riemannian algorithms rely on recoupling theory for SU(2).

• This can be done, and leads to diagrammatic techniques similar to those used for SU(2) spin networks.

• Such techniques can be proven using known identities for SL(2,C) matrix elements and Clebsch-Gordan coefficients.
SL(2,C) Recoupling

• After suitably renormalizing the 3-valent vertex, can prove recoupling for SL(2,C) spin networks

\[\frac{1}{\sqrt{\sum_{\mu} \int (\mu^2 + 4\nu^2) d\mu}} \left\{ \frac{\alpha}{\gamma} \frac{\beta}{\delta} \right\} \]

• Note the appearance of a non-simple representation in the recoupling formula: this is unavoidable and an exactly analogous situation occurs in the Riemannian case, when we consider recoupling for Spin(4) spin networks.
Evaluating the 10J
A Formula for 10J's in terms of 6J's

• Combining all of these steps we get a formula analogous to the Christensen-Egan algorithm for the Riemannian 10J:

\[10J = \int \prod_{i=0}^{4} (\lambda_i^2 d\lambda_i) \sum_{\nu} \int (\mu^2 + 4\nu^2) d\mu \quad (\text{Prod of CG’s}) \]

\[
\begin{align*}
\{ \rho_{20} \lambda_0 \nu,\mu \} & \{ \rho_{21} \lambda_1 \nu,\mu \} \{ \rho_{22} \lambda_2 \nu,\mu \} \{ \rho_{23} \lambda_3 \nu,\mu \} \{ \rho_{24} \lambda_4 \nu,\mu \} \\
\rho_{24} \lambda_1 & \rho_{10} \\
\rho_{20} \lambda_2 & \rho_{11} \\
\rho_{21} \lambda_3 & \rho_{12} \\
\rho_{22} \lambda_4 & \rho_{13} \\
\rho_{23} \lambda_0 & \rho_{14}
\end{align*}
\]

• Expresses 10J as a six-dimensional integral and one-dimensional sum over 6J symbols.

• Thus, dimension of integral is reduced (from 9 to 6) and experimentation seems to indicate the integrand is in general less oscillatory: when triangle inequalities are violated it decays exponentially.
Numerical Implementation

• First implementation: perform 6-dim integral using importance-sampled Monte-Carlo; ignoring sum over ν for now.
 • Not as fast as direct integral of kernel, since $6J$ still too slow

• Next approach (with Dan Christensen, UWO): Five of six dimensions of integral are λ's that appear only two at a time in each factor. Can use this to do an iterated integral as matrix multiplication.
 • Mimics Riemannian algorithm.
 • Allows accuracy of one-dimensional methods but without the usual exponential growth in running time of iterated one-dimensional integrals.
 • This method seems faster than direct integral, but we must still deal with sum over ν.
Outlook

- Improvements to be tested:
 - Need to improve asymptotics in $6J \rightarrow$ faster $6J$
 - Try to combine benefits of importance sampling with iterated matrix algorithm: use Gauss-Laguerre quadrature for 1-dim method.
 - Must implement sum over ν.
- Hope to test these improvements in next couple of months.
- Thanks to: NSF grant OISE-0401966; Dan Christensen, Wade Cherrington, and Igor Khavkine for discussions.