Introduction:

Section 1: - Evolution of Perturbations
 1.1 Background Equations
 1.2 Metric Perturbations + Gauge
 1.3 Matter Perturbations
 1.4 Perturbed Einstein's Equations
 1.5 Vector, Tensor and Scalar modes
 1.6 Density Perturbations
 1.7 Baryon Acoustic Oscillations
 1.8 Power Spectrum + Observations

Section 2: - Kinetic Theory
 2.1 Distribution Function
 2.2 Boltzmann's Equation
 2.3 Energy density, Brightness and Temperature
 2.4 Collisional Boltzmann's Equation
 2.5 Gauge Freedom
 2.6 Boltzmann Hierarchy
 2.7 Spherical Harmonics, Estimators and Observation
 2.8 The effect of varying the parameters

Section 3: Inflation or Topological defects
 or SU(3) + Inflation
Basics:

Homogeneity + Isotropy \[\Rightarrow \]
\[a^3(\tau) \left[-d\tau^2 + \delta_{ij} dx^i dx^j \right] \]

\[ds^2 = a^2(\tau) \left[-d\tau^2 + \frac{1}{(1-kr^2)} dr^2 + r^2 [d\theta^2 + \sin^2\theta d\phi^2] \right] \]

where \[k = +1 \Rightarrow \text{the curvature } \Rightarrow \text{closed} \]
\[k = 0 \Rightarrow \text{Flat} \]
\[k = -1 \Rightarrow \text{the curvature } \Rightarrow \text{open} \]

\[t \equiv \text{conformal time}, \]

after see \[t \equiv \text{cosmic time} \text{ s.t.} \]

\[\frac{a_t}{a} = 8 \]
\[\Rightarrow \frac{\dot{a}}{a} = \frac{k}{3} \rho a^2 - k + \frac{a}{3} a' \]
\[\Rightarrow \frac{\dot{a}^2}{a^2} = \frac{k}{3} \rho a^2 - k + \frac{a}{3} a' \]
\[\Rightarrow \rho = \frac{3}{8} a^2 (\rho + 3p) + \frac{a}{3} a' \]

The matter components of cosmological models are considered to be perfect, barotropic fluids, i.e., no viscosity and have a definite relation between pressure and energy density.

\[p = w \rho \Rightarrow \rho a^3 \dot{a}^2 \]

\[\Rightarrow \dot{a} = -3H(1+w) (\frac{a^3}{a}) \]

[using \(\rho' + 3H(1+w)\rho = 0 \)]

where \(c_s^2 \equiv \frac{P'}{\rho'} \) for a barotropic fluid

\[W = c_s^2 \Rightarrow w = \text{const} \]
The most general energy momentum tensor \(T^\mu_\nu \) for such a fluid is:

\[
T^\mu_\nu = (p + \rho) u^\mu u_\nu - \epsilon \delta^\mu_\nu
\]

where \(p \) is pressure, \(\rho \) is energy density, and \(u^\mu \) is the velocity of the fluid. (satisfying \(u^\mu u_\mu = -1 \))

For a photon fluid:

\[
u^\mu = \frac{dx^\mu}{dt}
\]

where \(\lambda \) is the affine parameter.

\[
\lambda = \frac{1}{2} \lambda^2
\]

\[
\lambda^\mu \lambda_\mu = -1.
\]

This is for a single fluid, if there are several fluids present, we need to allow for interactions (collisions) between them, which can transfer energy and momentum between them.

\[
\text{if } T^\mu_\nu ; \mu = 0 \text{ may not be true for each fluid individually, only the total fluid.}
\]
1.2 Metric Perturbations and Gauge

we will be dealing with perturbations around these metrics: consider an FRW metric.

The general, linear perturbation to this is:

\[ds^2 = a^2(t) \left[-(1+2\Lambda)dt^2 + 2B_i dx^i dt + (\delta_{ij} + h_{ij}) dx^i dx^j \right] \]

where \(A, B_i, h_{ij} \) are perturbations that are functions of space and time and are fixed by solving Einstein's equations.

we typically write this as

\[g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu} \]

where \(\bar{g}_{\mu\nu} \) is the background and \(\delta g_{\mu\nu} \) is the perturbed metric.

\(B_i \) is a vector and \(h_{ij} \) a tensor, but they contain scalar and vector components, so one can write:

\[B^i = D^i B + \bar{B}^i \] s.t. \(D^i \bar{B}^i = 0 \)

and

\[h_{ij} = 2C_{ij} + 2D_i \partial^j + 2D_j \partial^i + 2E_{ij} \]

with \(D_i E_{ij} = 0 \) and \(\bar{E}_{ij} = 0. \)
This is the general scalar-vector-tensor decomposition.

What about gauge? Check: under a gauge transformation

\[x^m \rightarrow x^m + \xi^m \]

with \(\xi^m = (T, D^T + \bar{L}^T) \)

we find:

\[A \rightarrow A + T + H T \]

\[B \rightarrow B - T + L' \]

\[C \rightarrow C + H T \]

\[E \rightarrow E + L \]

\[\bar{E} \rightarrow \bar{E} + \bar{T} \]

\[\bar{L} \rightarrow \bar{L} + (L + T') \]

\[\text{and} \quad \bar{E}_{ij} \rightarrow \bar{E}_{ij} \]

where \(\tau = \frac{d}{d\eta} \) and \(\eta = \frac{a'}{a} \).

Note: The tensor (transverse traceless) potentials \(\bar{E}_{ij} \) are gauge invariant, as are:

\[\Phi = -C - H(B - E') \]

\[\bar{\Phi} = A + H' (B - E') + (B - E')' \]

\[\Phi' = (\bar{E}^i)' - \bar{B}^i \]

\(\Phi' \) Bardeen Potentials
Check: initially we had 10 perturbation variables

\[4 \quad \text{Scalars} \quad (A, B, C, F) \quad \rightarrow \quad 4 \]
\[2 \quad \text{Divergenceless 3-vectors} \quad (E^i, B^i) \quad \rightarrow \quad 2 \times 2 = 4 \]
\[1 \quad \text{Traceless, transverse 3x3 tensor} \quad (F^{ij}) \quad \rightarrow \quad 2. \]

and 4 - gauge degrees of freedom

\[2 \quad \text{Scalars} \quad (T, L) \quad \rightarrow \quad 2 \]
\[1 \quad \text{Divergenceless 3-vector} \quad (Z^i) \quad \rightarrow \quad 4 \]

\Rightarrow 6 \quad \text{physical degrees of freedom}

\[2 \quad \text{Scalars} \quad (\Phi, \Psi) \quad \rightarrow \quad 2 \quad \text{(Bardeen potentials)} \]
\[1 \quad \text{Divergenceless 3-vector} \quad (\Phi^i) \quad \rightarrow \quad 2 \]
\[1 \quad \text{Traceless, transverse 3x3 tensor} \quad (F^{ij}) \quad \rightarrow \quad 2 \quad \text{(diagonal)} \]

\Rightarrow 4

Usually we work in one particular gauge
(and worry about to relate them to physical quantities at the end!)

e.g. Newtonian or longitudinal gauge:

\[B = 0; E = 0; \quad \vec{B}_i = 0 \]
\[ds^2_{new} = a^2(\eta) \left\{ -(1+2\Phi)\,d\eta^2 + \left(\delta_{ij} - (1+2\tilde{\Phi}) \right) dx^i dx^j \right\} \\
\]

or writing that: \(\Phi = -C \) \(\tilde{\Phi} = A \).

The scalar perturbation in Newtonian gauge are

\[ds^2_{new} = a^2(\eta) \left\{ -(1+2\Phi)\,d\eta^2 + (1-2\tilde{\Phi}) \delta_{ij}\,dx^i dx^j \right\} \]

This is sometimes useful because it reduces to the Newtonian potential on small scales.

Synchronous Gauge:

\[A = 0 \quad B = 0 \]

in this system of co-ords, every point corresponds to a freely falling observer.

But this doesn't fix the gauge entirely, the remaining freedom is the choice of the proper time of each observer \(\text{ie. const. } x^i \) and the choice of coordinates on each constant time hypersurface.