Bouncing Black Holes
Exercises in Dynamic Excision

Kenneth L. Smith
Penn State University
12 December 2002
Thanks

Pablo Laguna
Deirdre Shoemaker
David Fiske
Bernard Kelly
Erik Schnetter
Ulrich Sperhake
Overview

- Motivation / Perspective
- Methods for handing singularities
- Excision in general
- Brief History
- Excision - the Maya way
- Test Problem
- Results
Some perspective

The cover of *Science*
10 November 1995
The future?

The cover of *Science*
27 November 2005
One component of evolution

Suppose you wake up tomorrow and someone hands you a 3D NR code:
Suppose you wake up tomorrow and someone hands you a 3D NR code:

- **Your wish list:**

One component of evolution

Suppose you wake up tomorrow and someone hands you a 3D NR code:

- **Your wish list:**
 - Optimized, parallel 3D FD Cauchy code
 - Your favorite formulation of equations
 - Suitable, non-pathological gauge
 - Consistent outer boundaries
 - Astrophysically relevant initial data
One component of evolution

Suppose you wake up tomorrow and someone hands you a 3D NR code:

- **Your wish list:**
 - Optimized, parallel 3D FD Cauchy code
 - Your favorite formulation of equations
 - Suitable, non-pathological gauge
 - Consistent outer boundaries
 - Astrophysically relevant initial data

- **The spacetime still contains physical singularities that must be treated in some way**
Singularity-handling methods

- Singularity-avoiding slicing conditions
- Puncture methods
- Inversion symmetry
- Strange matter
- Excision
Excision in a nutshell

- An event horizon represents a causal boundary for a black hole spacetime
Excision in a nutshell

- An event horizon represents a causal boundary for a black hole spacetime
- An apparent horizon (outermost marginally-trapped surface) must be contained within the event horizon
Excision in a nutshell

- An event horizon represents a causal boundary for a black hole spacetime
- An apparent horizon (outermost marginally-trapped surface) must be contained within the event horizon
- Thus, we should be able to get away with murder inside the apparent horizon
Excision in a nutshell

- An event horizon represents a causal boundary for a black hole spacetime
- An apparent horizon (outermost marginally-trapped surface) must be contained within the event horizon
- Thus, we should be able to get away with murder inside the apparent horizon
- Let us ignore the region inside the AH - excise it
Excision in a nutshell

- An event horizon represents a causal boundary for a black hole spacetime.
- An apparent horizon (outermost marginally-trapped surface) must be contained within the event horizon.
- Thus, we should be able to get away with murder inside the apparent horizon.
- Let us ignore the region inside the AH - excise it.
- If we must impose boundary conditions:
Excision in a nutshell

- An event horizon represents a causal boundary for a black hole spacetime

- An apparent horizon (outermost marginally-trapped surface) must be contained within the event horizon

- Thus, we should be able to get away with murder inside the apparent horizon

- Let us ignore the region inside the AH - excise it

- If we must impose boundary conditions:
 - Just insist that information goes into the hole
A brief history

1987: Thornburg

- Suggests AH boundary condition
- Proposes “exclusion” in context of ID
- Based on communication w/ Unruh
A brief history

1987: Thornburg
- Suggests AH boundary condition
- Proposes “exclusion” in context of ID
- Based on communication w/ Unruh

1992: Seidel & Suen
- “Singularity-proof” numerical schemes
- Introduce horizon-locking coordinates
- Introduce causal differencing
- Causal differencing quite successful in 1D
A brief history

1987: Thornburg
- Suggests AH boundary condition
- Proposes “exclusion” in context of ID
- Based on communication w/ Unruh

1992: Seidel & Suen
- “Singularity-proof” numerical schemes
- Introduce horizon-locking coordinates
- Introduce causal differencing
- Causal differencing quite successful in 1D

Success in 3D:
- 1998: BBH Grand Challenge Head-on collision
- 2000: Pitt-PSU-Texas Grazing Collision (Agave)
2001: Alcubierre & Brügmann

- No causal differencing
 - Centered differencing w/ upwind on advection ($\beta^i \partial_i$)
- Extrapolation B.C. (zeroth-order r.h.s. copy)
- Cubical excision
2001: Alcubierre & Brügmann
- No causal differencing
- Centered differencing w/ upwind on advection ($\beta^i \partial_i$)
- Extrapolation B.C. (zeroth-order r.h.s. copy)
- Cubical excision

2001: Yo, Baumgarte, & Shapiro
- Extended to higher-order extrapolation
- Handled motion
Excision in Maya

- Carry around an extra grid variable - excision mask
- Initially, label everything as being part of computational domain (computational)
- Select an excision shape, label points inside excised
- Relabel excised points that have computational points as neighbors excised boundary
Historically, the AH boundary suggested a spheroidal excision region
Excision shapes

- Historically, the AH boundary suggested a spheroidal excision region.
- On our cartesian grid, this is approximated poorly as a Lego™ sphere.
Excision shapes

- Historically, the AH boundary suggested a spheroidal excision region
- On our cartesian grid, this is approximated poorly as a Lego™ sphere
- Since Alcubierre & Brügmann, the cube has become a popular choice
Excision shapes

- Historically, the AH boundary suggested a spheroidal excision region
- On our cartesian grid, this is approximated poorly as a Lego™ sphere
- Since Alcubierre & Brügmann, the cube has become a popular choice
- What is ideal?
Excision shapes

- Historically, the AH boundary suggested a spheroidal excision region
- On our cartesian grid, this is approximated poorly as a Lego™ sphere
- Since Alcubierre & Brügmann, the cube has become a popular choice
- What is ideal?
 - Fits on a cartesian grid
 - Approximates a spheroid
 - Efficient to compute
 - Preserves symmetry of problem (e.g. octant, quadrant, bitant)
Excision shapes

- Historically, the AH boundary suggested a spheroidal excision region.
- On our cartesian grid, this is approximated poorly as a Lego $^\text{TM}$ sphere.
- Since Alcubierre & Brügmann, the cube has become a popular choice.

What is ideal?

- Fits on a cartesian grid
- Approximates a spheroid
- Efficient to compute
- Preserves symmetry of problem (e.g. octant, quadrant, bitant)

Look to high school geometry!
The LEGO™ sphere

http://www.google.com/search?q=lego+sphere

Credit: http://www.brillig.com/lego/sphere
Excision shapes in Maya
Excision shapes in Maya
At each boundary point,
At the Excision Boundary

- At each boundary point,
 - Find the normal to the ideal surface
 - Find the closest approximate normal among neighbors
 - Record the grid locations \((i, j, k)\) of each point along the approximate normal
 - Record weighting coefficients \(a_n\)
At each boundary point,

- Find the normal to the ideal surface
- Find the closest approximate normal among neighbors
- Record the grid locations \((i, j, k)\) of each point along the approximate normal
- Record weighting coefficients \(a_n\)

This suggests a data structure containing the above info.
At the Excision Boundary

- **At each boundary point,**
 - Find the normal to the ideal surface
 - Find the closest approximate normal among neighbors
 - Record the grid locations \((i, j, k)\) of each point along the approximate normal
 - Record weighting coefficients \(a_n\)

- This suggests a data structure containing the above info.
- Then we have the infrastructure to later perform 1D extrapolation onto excision boundary:
At the Excision Boundary

- **At each boundary point,**
 - Find the normal to the ideal surface
 - Find the closest approximate normal among neighbors
 - Record the grid locations \((i, j, k)\) of each point along the approximate normal
 - Record weighting coefficients \(a_n\)

- *This suggests a data structure containing the above info.*

- *Then we have the infrastructure to later perform 1D extrapolation onto excision boundary:*

\[
f(i, j, k) = \sum_{n=1}^{N} a_n f(i_n, j_n, k_n)
\]
An example of extrapolation

\[u^{n+1} \]

\[u^n \]
An example of extrapolation

\[u^{n+1} \]

\[\rho_1, \rho_2, \rho_3, \rho_4, \rho_5, \rho_6 \]

\[u^n \]
An example of extrapolation
An example of extrapolation
An example of extrapolation
Populate

\[u^{n+1} \]

\[u^n \]
Populate

\[u \rightarrow u^{n+1} \]

\[u \rightarrow u^n \]
Shifted Kerr-Schild coordinates
The testbed

Shifted Kerr-Schild coordinates

KS data with no spin (IEF)
The testbed

Shifted Kerr-Schild coordinates

- **KS data with no spin (IEF)**
- **Make a time-dependent spatial translation**
Shifted Kerr-Schild coordinates

- **KS data with no spin (IEF)**
- **Make a time-dependent spatial translation**

\[x^i \rightarrow \bar{x}^i = x^i - x^i_{BH}(t) \]
The testbed

Shifted Kerr-Schild coordinates

- **KS data with no spin (IEF)**
- Make a time-dependent spatial translation

\[x^i \rightarrow \bar{x}^i = x^i - x^i_{BH}(t) \]

- Then we get shifted **KS (MovingIEF)**
Shifted Kerr-Schild coordinates

- **KS data with no spin (IEF)**
- **Make a time-dependent spatial translation**

\[x^i \rightarrow \bar{x}^i = x^i - x^i_{BH}(t) \]

- **Then we get shifted KS (MovingIEF)**

\[
\begin{align*}
g_{ij} & = \delta_{ij} + \frac{2M \bar{x}_i \bar{x}_j}{\bar{r} \bar{r} \bar{r}} \\
K_{ij} & = \frac{2M}{\bar{r}^2} \left(1 + \frac{2M}{\bar{r}}\right)^{-1/2} \left[\delta_{ij} - \frac{2\bar{r} + M \bar{x}_i \bar{x}_j}{\bar{r} \bar{r} \bar{r}} \right] \\
\alpha & = \left(1 + \frac{2M}{\bar{r}}\right)^{-1/2} \\
\beta^i & = \frac{2M}{\bar{r}} \left(1 + \frac{2M}{\bar{r}}\right)^{-1} \frac{\bar{x}^i}{\bar{r}} - \dot{x}^i_{BH}
\end{align*}
\]
Simulations

- **BSSN evolution**
- **Analytic lapse and shift** \((\alpha(t) \& \beta(t))\)
- **Excision radius:** \(1.5M\)
- **Extrapolation:** 3rd order soln
- **Outer boundary:** Analytic

- **dx^i = 0.20M**
- **dt = 0.05M**
- **Bitant symmetry**

- **Domain:**
 \(\pm10M \text{ in } x \text{ and } y,\)
 \(+7M \text{ in } z\)
Simulations

- **BSSN evolution**
- **Analytic lapse and shift** \((\alpha(t) \ & \ \beta(t)) \)
- **Excision radius:** \(1.5M\)
- **Extrapolation:** 3rd order soln

- **Outer boundary:** Analytic

- **dx^i = 0.20M**
- **dt = 0.05M**

- **Bitant symmetry**

- **Domain:**
 \[\pm10M \text{ in } x \text{ and } y, \]
 \[+7M \text{ in } z\]

- Recent: Addition of \(\chi = 2/3\) trick from Yo, Baumgarte, Shapiro (gr-qc/0209066)
Simulations

- **BSSN evolution**
- **Analytic lapse and shift** \((\alpha(t) \& \beta(t))\)
- **Excision radius:** 1.5\(M\)
- **Extrapolation:** 3rd order soln
- **Outer boundary:** Analytic
- **dx^i = 0.20M**
- **dt = 0.05M**
- **Bitant symmetry**
- **Domain:** ±10\(M\) in \(x\) and \(y\), +7\(M\) in \(z\)

- Recent: Addition of \(\chi = 2/3\) trick from Yo, Baumgarte, Shapiro (gr-qc/0209066)
- 120\(M < T_{\text{crash}} < 140M\)
Results