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Abstract

The presence of spiral structure in flocculent spiral galaxies is a problem that
has only been partially explained by theoretical models. Because the rate and pattern
of star formation in the disk must depend only on mechanisms internal to the disk,
we may think of the spiral galaxy as a self-regulated system far from thermodynamic
equilibrium, a paradigm that has been useful in chemistry and biology. This paper uses
this idea to look at numerical models of the formation of spiral structures in certain
types of galaxies, including one-zone models and two-dimensional numerical simulations.
In numerical runs of a reaction-diffusion model, spiral structure forms and persists over

a period of about 500 million years.
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Chapter 1

Introduction

1.1 Models of spiral structure formation

Ever since astronomers have been able to resolve the “island universes” as systems
of stars, much like our own Milky Way, they have seen a wide variety of galaxies, ranging
from the shapeless irregular galaxies to the majestic pinwheels of the spirals. Beginning
with some of the earliest observations of galaxies by Edwin Hubble, there has been an
effort to classify these shapes and explain their variety. Hubble himself developed a
scheme where galaxies evolve from an elliptical shape into a spiral [41]. Yet the question
remains, and has not been fully decided: why do galaxies have the structure that they
do? In this work, we will concentrate on a certain class of spiral galaxies — known as
flocculent galaxies because of the fleecy appearance of their many short and asymmetric
arms! — seeking to develop models for their structure.

This problem of why some galaxies have spiral structure is not only of formation,
but also of maintenance. Since spiral galaxies tend to have a rotational velocity that
is approximately independent of radius over much of their volume [73, 74], one would

expect that any spirals would eventually tighten up until they circle the galactic bulge

many times, like streamers around a May pole. In fact, since galaxies have rotated many

I This description is based on the arm classification scheme of galaxies developed by Elmegreen
and Elmegreen [22, 25].



tens of times in their lifetime, one would expect to see spiral arms wrapped that many
times around the center. Instead, what one sees are that spiral arms wrap only a few
times around the central bulge. This problem is known as the winding dilemma (see
Section 6.1 of Binney and Tremaine [11] for a fuller description). The models considered
here will deal mainly with this maintenance process, and we assume that the galactic
disk has already formed by the accretion of matter.

We list two ideas concerning spiral structures in galaxies; these are not contra-
dictory theories, but instead, each is more relevant to certain types of galaxies. As
mentioned above, we will be considering flocculent galaxies, where there is no global
spatial symmetry in the spiral arms. However, there are also galaxies known as grand
design spirals, so-called because of their high degree of symmetry and long, continuous
arms. Due to the uniformity of the overall shape, it is easy to suspect that grand design
spirals are the result of a global process, perhaps under the influence of gravity. The
flocculent galaxies, on the other hand, lack this uniformity, so processes of a more local
character would seem to have the upper hand. We can see the differences between the
two types of galaxies in Figures 1.1 and 1.2. To quantify these intuitions, we offer a brief
description of density wave theory, a global effect on spiral structure, and triggered star
formation, related to local star formation in the disk.

Density waves arise because a quasi-stable pattern emerges in the disk due to
gravitational forces [52, 53]. As stars circle the center of the galaxy, it will move in elliptic
orbits due to “wobbling”, which arises from gravitational perturbations of nearby objects
or an initial velocity relative to the local standard of rest originating from their formation.

Some of these epicyclic orbits are almost closed, so that material in these particular orbits



Fig. 1.1. The galaxy NCG 2403 as seen in light of wavelength 493 nm, as an example
of a flocculent spiral galaxy. Note that, although there is some spiral structure, there
are not well-defined arms in the disk. The figure is from Frei et al. [33]



Fig. 1.2. The galaxy NGC 4321 as seen in light of wavelength 493 nm, as an example of
a grand design galaxy. Here, the spiral arms are more obvious and extend in a roughly
symmetric pattern across the disk. The figure is from Frei et al. [33]



can form dense waves of material. If there are gravitational perturbations such as a close
companion or a non-symmetric halo, the axisymmetric disk will develop a spiral mode,
the two-arm mode being the most prominent. This instability will result in a spiral
pattern, with an almost constant pattern speed, where the density of stars and gas is
enhanced. Gas that is inside the corotation radius will repeatedly encounter the density
wave, subjecting it to the shocks and compression that lead to star formation.

However, the density wave theory does not describe flocculent galaxies as well as
it does grand design spirals. In particular, the arms of a flocculent galaxy appear only in
blue light, the site of recent star production, while the red light of the galaxy is uniformly
spread across the disk [23]. A density wave would gather all types of material — young
stars as well as old ones — into the minimum of the potential, so that the spirals would
be evident in both red and blue light. Figures 1.3 and 1.4 show the difference between
these two types of galaxies by giving azimuthal profiles of the arms in red and blue light.
This would indicate that, unlike with grand design galaxies, density waves are not the
primary cause of spiral structure in flocculent spirals. Since the symmetry of the grand
design galaxies is missing, it would seem likely that the arms of the flocculent galaxies
come from the action of local phenomena. Thus, one possible explanation is that the
pattern of star formation itself is responsible for the galactic structure.

Observationally, it is seen that the star formation rate is based on local properties,
such as the surface density of the gas in the disk. This relation can be given empirically

by a relation first given by Schmidt [80, 81], relating the formation rate of stars  to the



Fig. 1.3. Azimuthal profiles of NGC 5055 in blue (top) and red (bottom) light, as an
example of a flocculent galaxy. Notice that the large changes in blue intensity are absent
in the red. Adapted from Elmegreen and Elmegreen [25].



Fig. 1.4. Azimuthal profiles of NGC 4321 in blue (top) and red (bottom) light, as an
example of a grand design galaxy. Notice that the change in intensity denoting the spiral
arms can be seen in both colors. Adapted from Elmegreen and Elmegreen [25].



total surface gas density p of the disk,

~p (1.1)

where n is between 1 and 2 (recent work by Kennicutt [44] gives n = 1.4  0.15).
Stochastic models which have a probability of new star formation proportional to the
gas density have been developed (see the review by Seiden and Gerola [86]) where spiral
structures are seen. However, we seek to use a mathematical model that takes into
account the processes that occur within the disk, at least for length scales above 100
parsecs, where almost all star formation seems to be triggered by other players, as well
as the previous generation of stars [27]. But first, we describe some of the reasons why

one would believe that local processes could give rise to spiral structure.

1. idence for self re ulated star formation

Since we will be studying flocculent galaxies, and hence constructing models of
triggered star formation, we present here some of the observational evidence for self-
regulation and propagation, as well as some of the terminology we will employ, drawing
on the reviews by Seiden and Gerola [86] and Elmegreen [27]. The basic cycle of star
formation is one between gas and stars — stars form from the collapse of gas in cold giant
molecular clouds (GMCs) into an object capable of sustaining nuclear fusion, while the
death of stars, especially in supernova (SN) events, releases hot gas back into the inter-
stellar medium (ISM). This gas will eventually cool and condense into GMCs, completing

the cycle. In addition, star emit radiation that heats gas, as well as the production of



shockwaves by SNe. All of these processes can control the rate of new star creation,
and are from internal sources, so there is an element of self-regulation to the system.
The question is whether the rate of previous star formation is the dominant factor in
determining the size of the next generation, or are other factors, such as gravitational
perturbations from outside the disk, more important.

All star formation is believed to arise from the gravitational collapse of a sphere
of gas into a protostar inside a cloud of gas. The effect of gravity will be hampered
by various other types of energy — thermal, magnetic, and rotational, for example —
which will prevent this infall. Thus, there must be a mechanism to either dissipate
the energy present in the cloud, or else add enough new mass to the cloud, so that
it is gravitationally bound. Although this dissipation can happen without any outside
influence (s ontaneous star formation), the impact of a shock incident on a cloud will
enhance the rate of energy loss. The final result of the shock will be to add kinetic energy
to the cloud, but on smaller scales, there will be an increase in density and energy loss,
faciliating the formation of stars.

Historically, the first pieces of evidence concerned groupings of very blue stars,
known as OB associations after their spectral classes, where a majority of these stars are
found. It was noticed that these associations were not gravitationally bound, and thus
could not be very old. Closer observation yielded that the groups were spatially ordered
into subgroups, each of a specific age, from oldest to youngest lying in the galactic plane.
With the advent of radio astronomy, observations showed that each OB association was

located next to a GMC, with the youngest stars the closest to the cloud. Thus, it seems
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likely that the effect of each generation of stars on the cloud led to the birth of another
batch of stars.

We briefly outline the processes necessary to start star formation on a larger scale.
Cold clouds of the GMCs condense out of the ISM, forming distributions of gas and dust
that are apparently scale-invariant. The condensation is helped along by the actions of
dust, carbon and oxygen, while it can be impeded by UV radiation from massive stars.
Typical time scales for the inhibition are about 107 years, the average life span of massive
stars, after which the supernova rate and the UV radiation flux will die off. Once the
GMCs start to condense, then their cores may collapse to form stars. This collapsing is
brought on by shockwaves from supernovae or HII regions (there may also be the effect
of density waves, but these are not as important for the galaxies we are considering),
and so have the same length scale as the propagation of dust by supernovae, or about
100 parsecs. Once the stars are formed, they can inhibit the infall of gas by the stellar
wind or UV radiation produced by the star [2, 47]. These effects occur on short length
scales, about the size of one cloud complex, and reduce the star forming efficiency of the
clouds down to a few percent. We represent the system of equations schematically in

Figure 1.3.

1. ationale for a reaction net or

We note that several researchers have considered models of star formation, rang-
ing from the stochastic models mentioned above, to one-zone models (reaction equations

without taking into account spatial extent of the components) [29, 30, 35, 39, 40, 46,
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Fig. 1.5. Representation of the matter flows within the galactic disk, including the
inhibiting effects of UV radiation and shockwaves produced by supernovae.
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87, 88] and reaction-diffusion models [63, 64], along with models based on a hydrody-
namical approach (e.g. Theis, Burkert, and Hensler [95]). However, the one-zone models
often move to an equilibrium or steady state solutionz, which can explain the steady
star formation rate in the solar neighborhood, but not the changes in this rate needed
to produce spiral arms in flocculent galaxies. The stochastic models reproduce this phe-
nomenon rather well for a variety of spiral types, using simply a Schmidt-type law for
star formation, but there, the question remains of how this power law structure comes
from the physics involved. Koppen, Theis and Hensler [46] start from a general one-zone
model to show that this type of power law is generic from a simple set of equations,
yet, again, the components of their model tend quickly to a steady state. In addition,
they do not include the effects of radiation and shockwave propagation into their model.
The reaction-diffusion models of Nozakura and Tkeuchi [63, 64] produce realistic spiral
structures, but they examine only the behavior of gas at different temperatures, so there
is only an indirect tie to the distribution of stars. Hence, our goal will be to develop a
model that can produce spiral structure traced out in the stellar component.

Recently, there has been a great deal of both theoretical and experimental work
studying how non-equilibrium systems in chemistry and biology produce patterns in
both time and space. This has included looking at both the organic — such as bacterial
colonies [9, 10], the differentiation of cell types [43], and the formation of embryonic
structure in multicellular organisms [43, 61] — as well as the inorganic — the B reac-

tion [100], diffusion limited aggregation [8, 49], and self-organized critical systems [4, 5].

ote that e se the ord e ilibri m in t o di erent senses in this or the first
to denote a system in thermodynamics e ilibri m, the second is a sol tion here the time
derivatives of the component f nctions are ero i.e. a steady state sol tion .
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There have been many successes in reproducing patterns in the laboratory, and these
models typically share both partial differential equations and discrete elements such as
cellular automata. But most of this work in non-equilibrium systems has been after the
main work on the formation of structures in astronomy, although the work of Seiden
and Gerola, and Nozakura and Ikeuchi mentioned above is done in this spirit. Thus one
might seek to apply this work to patterns seen in spiral structures.

To focus on the aspects of star formation due to local influences, we do not take
into account the effects of gravity from external sources, and use only the fact that the
galactic gravitational potential produces a linear velocity approximately independent of
radius across a range of radii (from now on, we will assume that the linear velocity is
a constant). Thus, the galaxies we will be studying here will be, in a sense, “isolated”,
although, as mentioned in connection with the density wave theory, outside effects,
including the halo of the galaxy itself, can lead to perturbations of the disk. Because we
are studying the process in isolated galaxies, we know that the formation must be caused
by events within the disk, rather than by the actions of outside players. The isolated
galactic spiral is far from thermodynamic equilibrium, and there is a differentiation of
material into stars and clouds of gases whose distribution varies over space and time. In
addition, star formation happens at a constant rate, as averaged across the disk®. This
is a clue that the process is regulated by a feedback loop to maintain this constancy
(for evidence of this mechanism, see [14, 18, 21, 31, 40, 58, 90]). These characteristics

are shared by other types of non-equilibrium systems. Below, we list the predominant

This is tr e in observed galaxies p to a factor of t o, especially for later type spirals. ee
andage [7 ] for ho the star formation rate in di erent types of spirals changes ith time.
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features that these kinds of networks of reactions have in common, along with examples

of the same behavior in galactic disks.

There is a slow (relative to the dynamical time scales) and
steady flow of energy, and perhaps matter running through it. In spiral galaxies,
star formation proceeds at approximately a constant rate, averaged over the disk,
for time scales on the order of 1010 years. The fact that this is greater than the
time scales of the actual star formation process (107 years) implies that the slow

and steady rate is regulated by feedback mechanisms.

The steady state is far from thermodynamic equi-
librium, and there is a coexistence of several species or phases of matter, which
exchange matter and energy among themselves through closed cycles. The galactic
disk is not a uniformly dense clump of material at thermal equilibrium, but instead
is divided into gases at different temperatures and stars of various mass. These
species exchange matter: massive stars supernova to form warm gas, which can

cool and then condense into new stars.

The rates at which material flows around these cycles
are governed by feedback loops that have arisen during the organization of the
system into the steady state. An example related to star formation is suggested
by Parravano and collaborators [56, 68, 69, 71], which explains how the average
pressure in the ISM is maintained. They argue that there are two phases, the
warm gas of the ambient phase, and the cooler gas of the condensed phase, with

a phase boundary in the pressure-temperature plane. Ultraviolet radiation from
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the supernovae of massive stars heats the gas, which prevents the condensation of
newer stars, so the supernova rate goes down, allowing new massive stars to form
(and so the supernova rate will increase again). This feedback mechanism keeps

the gas on the phase boundary.

Any substances that serve as catalysts or
repressors of reactions in the network are themselves produced by reactions in-
side the network. Suppose we look at the condensation of giant molecular clouds
(GMCs). This is catalyzed by dust grains produced by cool giant stars, shielding
the clouds and providing sites for molecular binding, and carbon and oxygen, which
may cool the clouds by radiation from the rotational modes of CO molecules. The

condensation is inhibited by ultraviolet radiation from massive stars.

There may be spatial segregation of the different phases
or materials in the cycles. This occurs when the inhibitory and catalytic influ-
ences propagate over different distance scales. At the smallest scale, this means
the production of certain substances may be subject to refractory periods — once
production has occurred in a local region, it will not be repeated there for some
period of time. For the influences in the process of GMC condensation, dust grains,
carbon and oxygen propagate only over distances of about 100 parsecs (how far
supernovae and massive stars can spread their products) while UV radiation can

travel over much of the galactic disk.

As can be seen, there is evidence that we can think of spiral structure in isolated

galaxies to be a product of a self-organized, autocatalyzed network of reactions in the



16
star formation process. Given a system with the characteristics listed above, there are
models which can describe the spatial structure, the most typical of which is the reaction-
diffusion model [43, 61, 96]. Most work in models of star formation in the astronomical
literature have focused on one-zone models — neglecting spatial effects to focus on the
solar neighborhood — or used either hydrodynamical calculations or stochastic simula-
tions. In the reaction-diffusion model, one can have structure arise from the formation
of excited modes inherent to the equations, or the development of travelling waves in the
disk. Note that, even though there are no travelling wave solutions for a linear parabolic
equation, there can be for a non-linear diffusion equation. The prototypical example is

the Fisher equation [38, 62],

(=0 ) — (1.2)

considered here in one dimension. There are two static solutions, =0and =1, and

the travelling front will interpolate between these two values, with, for example,

lim ( ¢)=0 lim ( ¢)=1 (1.3)

These waves will evolve at some speed which is dependent on the initial data given.
The goal of this work is to see if a system of model equations can be developed

that can exhibit the formation of spiral structure. Most of the work here will focus on

pattern formation, where only certain modes of the system are excited as time passes,

much like how a swinging pendulum will only exhibit specific motions to the detriment
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of others. However, we will also devote some work to looking at the notion of creating
a travelling wave moving through the galactic disk. Two possible means of doing this
are to find equations with more than one equilibrium state, as with the Fisher equation,
and to develop a model that oscillates in time?. Our plan for the rest of this work is as
follows. In Chapter 2, we consider a mathematical model of star formation due to Shore
and Ferrini [89], which shares many features with other models that have appeared in
the literature. The components of this model are ambient gas, giant molecular clouds
and massive stars. We look for the existance of a steady state solution to the equations,
and determine whether this equilibrium is stable to perturbations. Because the rates of
gas cooling into GMCs and spontaneous star formation are left free, two particular cases
are studied in detail. One of these is a toy model for the more comprehensive system
of equations used in Chapter 3, which has its antecedents in work done by Smolin [91],
Freund [34] and Cartin and Khanna [16]. By adding UV radiation and shockwaves, we
hope to capture more of the physical length scales of star formation. Finally, in the

Conclusions, we discuss further directions that this work can be taken.

There is a third possibility, hich e ill not consider in this or ,b tis certainly applicable
to modelling galaxies. This is to consider e ations here each spatial point actsli e an oscillator,
b t that there is a spatial variation in the phase of the sol tion.  simple physical example [ 2]
isaro of simple pend la, here the length of each pend 1 m rod changes as one moves do n
the ro . f the pend la are all set into motion at the same time, there ill appear to be a
travelling ave, ith the avelength varying in position. This might be a sef 1 concept in
st dying spiral str ct re, beca se of the variation of, say, metallicity in radi s might res 1t in
this type of sol tion.
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Chapter

A rst look at star formation

.1 Mathematical models of reactions

First we review the rationale behind writing down a particular set of equations
to model a system of reactions, based on similiar ideas from chemistry; a brief outline of
the process of analyzing these mathematical relations is given in Appendix A. Suppose
we consider a system of chemical reactions involving four substances, designated by the

letters ,A, and , with relations

A (2.1)
A (2.2)

A 2 3 (2.3)
(2.4)

This system of reactions is one of the simplest models of chemical reactions, known as
the cubic autocatalator [85]. In the first two reactions, we simply have one substance
turning into another —  into A, and A into . The last reaction is similar, but (2.3)
is different, in that units of one substance, A, are destroyed to form one more unit of

than existed previously — this is an autocatalytic reaction, where the amount of is

increased by its reactions with other substances.
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Now we want to construct a mathematical model that simulates this system of
reactions; the rate of each reaction will depend on the concentrations of the initial
substances (denoted [ |,[A4], ), as well as a coefficient related to the reaction time
scale. This rule is known as the law of mass action [62]. For example, the rate of
reaction (2.2) would be written as ko[A], where k9 is a rate constant. Because they
represent concentrations of physical quantities, we must have [ | 0, , and similarly,
we assume that the rate constants are also greater than zero. Then, the change in all of

the substances would be written as

[] = K] (2.5)
[A] = k[ ] KolA] (2.6)
[] = koAl KglAl P Kyl ] (27)
[ ] = kal ] (2.8)

Note especially the form of the terms for (2.3): because the reaction depends on the
likelihood that one A and two  can react, the dependence is on [A][ ][ | = [4][ ]2.
If we assume that our chemical system is set up such that is continually supplied
and  is always removed, then we can treat their concentrations as constant, so that
we only consider equations (2.6) and (2.7). We will use analogous procedures to model

astrophysical phenomena, in star formation.
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he hore errini model

As a warm-up exercise for the more complicated CFKS model we will consider in
the next chapter, we start with a model from the review article by Shore and Ferrini [89].
This model has three components — gas g, clouds ¢ , and (massive) stars s; although not
explicitly mentioned, we will see below that remnants are implied by the relations. The

equations are

c= g ( Nes (N (2.9)
’ ’
g = rs cs g g (2.10)
2
s = rs s c g (2.11)

where m and n are coefficients of the Schmidt law terms, between 1 and 2. Briefly, we
summarize the processes that are modeled by these equations; for further details and
references, see the original review [89]. The actual terms in the equations are abstracted
from these mechanisms using the law of mass action, and the range of the coefficients

listed by Shore and Ferrini is given in Table 2.1.

Death of stars s  g: Considering the eventual death of massive stars, we have a
term rs, where r gives the SN rate, while each SN event adds warm gas to the
ISM, denoted by r'. Note that, because there will be a remnant left over by the
supernova (such as a neutron star), not all of the massive star mass is returned to

the gas, and so <l

1 1 this and all other models considered in this paper, e simplify the e ations by ass ming
exponential decay ith some lifetime for massive stars. o ever, this is not exactly the case in
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Cloud destruction ¢s g, cs s: Because of the presence of massive stars and
their stellar winds and SNe produced shocks, there will be a mechanism of cloud
distruption. As mentioned in the last chapter, some of this pressure will trigger
star formation (cs ), but the eventual result will be the disruption of the cloud
into warm gas (cs  g). Typically, the efficiency of star formation is around a few

percent, so the ratio of the rate coefficients is / F'~o0.1.

Cloud-cloud collisions ¢2 g, ¢® s Another source of pressure is the collision

of clouds, which will have the same types of effects as the star-induced cloud
destruction mentioned above. Again, the rate coefficients will be such that / !~

0.1.

Cloud formation g ¢: From cooling mechanisms such as collisional excitation
and grain cooling — both of which are dependent on collisions of molecules with
other substances — the temperature of the ambient gas is reduced until a denser
GMC can be formed. Because the processes are collisional, we assume the exponent
will be somewhere between 1 and 2: a value m = 1 would indicate that cloud
formation occurs at a constant rate per density of gas, while m = 2 means the

cooling rate is proportional to the gas density.

Spontaneous formation of stars g s: Although, on the scales that we will
consider in this work, most star formation is a result of triggering by outside sources

of pressure, there is still the possibility of a dense core forming by dissipation, and

physical systems, here the stars have a finite lifetime, and then s pernova. n light of res lts
presented later in this or , it is possible that this ass mption of exponential decay does not
give a s dden eno gh ¢ to to the stellar pop lation, and hence does not allo the system to
refresh itself ade ately for ane b rst of star formation in a region of the galaxy.
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collapsing to form a star. This term takes that avenue of formation into account,
but with a smaller rate than with triggered processes, i.e. . The exponent
1, as mentioned in the Introduction, for total star formation averaged over the disk

is observed to be somewhere between 1 and 2, with most recent estimates about

1.5.

Mass infall to the disk : Galaxies are believed to be formed from the condensation
of matter from a spherical halo into a disk, and so there is certainly the possibility
that there is a continuing flow of matter. It is believed that the rate is enough to
replenish the material in the disk in a time span of billions of years (see Section

4.3 of Larson [50].

Table 2.1.
Component coefficients in the Shore-Ferrini model

0.1 Autocatalytic production of stars
! 1 Warm gas produced by stellar influence
0.01 - 0.1 Star formation from cloud-cloud collisions
! 01-1 Warm gas formation from cloud-cloud collisions
0.01 Stellar death rate
r! 0.001 Return of warm gas due to supernovae
0.005 - 0.5 Gas infall
0.02 Spontaneous formation of clouds
0.003 Spontaneous formation of stars
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In their description of this model, Shore and Ferrini used 107 yr as their time scale,
and normalized all the components to be mass fractions of the total mass of the region in
question (i.e. the solar neighborhood). By renormalizing the components and the time
variable, we can write the equations in terms of dimensionless functions and parameters
and allow us to reduce the number of parameters appearing in the equations. Using

hatted quantities to temporarily denote those components which are dimensionless, if

we let
c= ¢ g= g s= s r = (2.12)
and make the choices
—1
= = =TI (2.13)
and
7"/ -1
a=— n=— p=— K= — 0= — (2.14)
T T T T T

and similarly for the primed quantities o' and /) then our system of equations is now
n y

2

c =g (a a/)cs (n n/)c (2.15)

g = g Kg pS des 77/02 1) (2.16)
_ 2

s = s Kg acs 1ncC (2.17)

dropping the hats for clarity. We have made the choice to normalize the various compo-
nents by the rate of gas cooling. Since almost all star formation is a result of condensation

of dense cores from molecular clouds, and new matter enters the system by way of the
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gas inflow term §, then the amount of new material available for stellar production is
dependent on this cooling coefficient. Thus it seems logical to scale by the cooling rate,
since a larger rate will result in more star formation. Another logical choice is to nor-
malize the components by the matter infall rate; we do not do this here to simplify some
of the mathematical computations. We will use Greek letters from this point on in this
work to denote parameters. Notice that s is the total change in the stellar components,

which is different than the star formation rate, given by

()=Kg acs nc (2.18)

We recoup a Schmidt-type law for the star formation rate, and is a typical feature of

one-zone models studied in the literatureQ.

he stead state solution

Now that we have our system of relations, we can ask if there are any values of the
components where the time derivatives are zero, that is, an equilibrium solution. Since
the star formation rate is approximately constant in the solar neighborhood, it is logical
to suspect that this may be because the system is in a steady state (not, however, in

thermal equilibrium). We can find the steady state value of s, regardless of the exponents

ndeed, by parametri ing the stellar birth rate as an arbitrary f nction hich depends
on gas density and temperat re, oppen et al. [4 ] sho that the steady state star formation
rate is of the form of a po er la . o ever, their model consists only of gaseo s, stellar and

energy components, and it is not clear that this is tr e for all models. e ill ret rn to
this  estion later.
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Table 2.2.
Reparametrized coefficients in the Shore-Ferrini model and their evaluation in the cases
m=1,n=3/2 and m = 2 (with K = 0)

m=1n=3/2| m=2
o 10 2t- 10 5
o 100 21~ 100 50
n ol= 10 2~ 1-10 0.5 -5
o 10 21— 100 21~ 10 - 100 5 - 50
p) 0.1 0.1 0.1
b 05 2 1 50 2 1 0.5 - 50 1-100
K 003 21— -1 0.03 0
m and n:
c s=0 sq = L (2.19)
g s= =1, :

Notice that, apart from the physical requirement that supernovae do not produce more
matter than the parent star, we also have that 1 p > 0 from requiring the positivity of
sg- Or, to put it another way, if the death of stars added more gaseous material than the
original stellar mass (which, of course, is unphysical), then there would be an additional
source of matter which would fuel the system, and the number of stars would increase

without limit. For g, we also get3

c g =0 rg=01 Pl adey n(l p)f] (2:20)

ince the coe cient representsa spontaneo sformation of stars,i.e. itho t any triggering,

e ill never divide by to allo the res lts to carry thro gh in the case that is set identically

to ero. The limit 0 ill be the only limit that e loo at, since it allo s s to ma ero gh

comparisons ith the later model. o ever, eleaveitin thee ations e ill present,

so that, for example, if e ish to consider a model here spontaneo s star formation is far more
important than triggered formation, e can do this directly from the form las given.
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1 2
g s = c=0 gy =0 1)y T (2.21)

If we return to the star formation rate, using (2.19) and (2.20) we see that the equilibrium
rate is simply

=2 2.92
0=7, (2.22)

From (2.17), we see that, to keep the stellar component constant, we must balance out
the exponential decay due to supernovae with an equal creation rate. So, as one might
expect, the star formation rate is proportional to the rate of matter inflow into the disk,
which provides the only new source of matter.

Now, first, we consider the equations generically, and ask the question of how
many roots we would expect for gg. Defining (cp) = kg from (2.20), and  (cp) = 9

from (2.21), considering the range

ad (@6)2  4ns(1  p)
291 p)

i.e. where , 0, then by looking at the difference Kl 1 1 , which will be
zero when we find a consistent solution for gy and c(, we can see that the slope of this

function is always positive:

= (2.23)
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where we implicitly assume that 1 m,n, 2, and define

/ d 1
_—= 2n(1 2.24
deg "1 oL adeg 2n(1 - pleg] <0 (2.24)
/ d / (@ o)s
— =2 0 2.25
dcg (m mey PR (2:25)
Evaluating at ¢y = 0 gives [/<;1 1 1 (eg) = [6/(1 p)]1 < 0, while as

cq increases, (cg) will tend to zero while (cp) gets larger. Thus, the difference is
monotonically increasing from a negative value, so we can generically expect only one
real positive root for c¢j. In fact, we can limit the range of ¢y even further by looking at
the original evolution equations. Regardless of the values of m and n, s = 0 in (2.17)
means (1  acp)sp 770(2) gy =0, and because the last two terms are non-negative,
so the first must be negative. Since sy > 0, this implies (1  acg) > 0.

However, we cannot say anything further about the solutions of ¢y, and thus g,
without having specific values for m and n. We now consider several choices for the

exponents m and 7, and find the corresponding equation for the equilibrium value of .

CASEL m=n

In this case, we can equate (2.20) and (2.21) to give
(co) =1 k) rnJ0 p)cg [a(l K) kalig =0 (2.26)

CASEIl: m=2,n=1
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These exponents approximate one version of the more involved CFKS model which

will be studied in the next chapter. Here, (2.20) and (2.21) give us

(1 p)%c 208(1 p)cp 2601 p) K 7)1 p)°
(a6)2lcs 208 K@ o)1 Pl 62 =0 (2.27)

We will later look at the stability of the fixed point, with the condition that k = 0.

CASEIIl: m = 1,n = 3/2

The value of n here corresponds roughly to that determined observationally for the

star formation rate averaged over the galactic disk, and gives us the equation

@ p7%6 adg n P

This gives us a sixth order polynomial for ¢y which, by the argument above, gives
us only one real positive root. As an aside, we note that, in any case where m/n is
a rational fraction, we can similarly find an expression for the roots of ¢, although

it might not be a particularly tractable one.

CASE TIV: m arbitrary, n = 0

In our argument above for the existance of only one real positive root, we neglected
the case when either of the exponents is zero, so we look at an example here. This

is the case with a constant rate of cooling of the gas g; from (2.20), we get

n(1 p)cg adcg [k(1 p) =0 (2.29)
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If k(1 p) 4, then there is no real positive solution for ¢y. However, since

physically, k ~ 0, there will be a root for the equilibrium solution.

Notice that when x = 0, all these equations are the same (in case II, the equation for ¢
is a perfect square, where each factor is the same relation as the other two cases). The
CFKS model, which we will consider in the next chapter, is a more complicated version

of case IT with k = 0, so we will examine this particular system later.

ineari ation a out the e uili rium

The next step, once we have a steady-state solution, is to look at the linearization
of the equations. Since we know that our model has only one equilibrium solution, our
goal here is to see if the system generally tends to evolve towards or away from this
steady state. With this in mind, we consider perturbations to the equilibrium values of
the form ¢( ) = ¢ , and simlilarly for the other two components. If Re( ) > 0,
then the perturbation will grow, and the equilibrium is unstable to small perturbations,
while if Re( ) < 0, then it will decay back to the steady state if the system is perturbed.

Taking this form of the perturbation, our system of equations becomes

/ / -1 /
(@ o)y 20 e mg, (@ o)

= a'so 277'00 my, -1 nkg, -1 p a/co
asy  2ncg nkg, -1 1 ac

(2.30)
The matrix on the right hand side, which we denote as A, known as the stability matrix

of the system of equations. By solving the characteristic equation A =0, we can
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find the eigenvalues of this matrix, and thus, the behavior of the steady state; here,
we find that

3472 =0 (2.31)
where the coefficients are given as

1

A =1 agq my, -1 nkgy (« a/)so 2(n nl)co] (2.32)

-1 / / / -1 /
= nkgy (1 p (a a)g asy 2n9c¢] (1 ac)(mg, asy 21 cq)

-1 -1 !
(asg 2nco)(mgo nKg, 1 ac¢) (2.33)

= (1 p) mgy esy 2mcg) mngy e o)sy 2n 7)) (2:34)

Since acy < 1 for all cases mentioned above, we can see that the coefficients of 2 and
the constant term are always positive. Because of the complexity of the terms, there
would seem to be little to gain by finding the general solution of this cubic equation in
terms of the parameters and the equilibrium values cg, gg and sg. Instead, we look at
the cases m = 1,n = 3/2 (case III above) and m = 2 with k = 0 (this case is a simplified

version of the model we will consider in Chapter 3).

The case m = 1,n = 3/2

As stated earlier, the equation for the equilibrium value of c( is a sixth order
polynomial, so we must solve it numerically. The steady state solutions of the
system are given for several choices of parameters in Table 2.3, with fixed values
a =10, o = 100, p = 0.1, and s = 0.03. We do not list the values of s, since they

are constant for a given § and p. Here, we can see that changes in the parameter
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¢ simply scale the values of the equilibria. There is also not a great variation if we
choose differing values of 7 and ' — there is a 4  range in the values of cg when
6 = 0.5, and an even smaller 0.01 range when ¢ = 50. When we solve for the

eigenvalues, assuming 17 = 1 and 77' = 10, for § = 0.5, we find

= 0.157664, 1.01008, 62.7552

Since these eigenvalues are negative and real, for this choice, the behavior of this
system will be to go to equilibrium, as illustrated by Figure 2.1. Exploration of
the parameter space seems to confirm that this is generic, although, at this stage

there is no proof of this statement.

Table 2.3.
Equilibrium values of the components in the m = 1,n = 3/2 case of the Shore-Ferrini
model

n|m 4 <) 90

1] 10 | 0.5 | 0.060412 | 3.73196
1 | 100 | 0.5 | 0.058026 | 3.88610
10 | 10 | 0.5 | 0.057487 | 3.57919
10 | 100 | 0.5 | 0.055520 | 3.73196

1| 10 | 50 | 0.021074 | 128.790
1 | 100 | 50 | 0.021068 | 128.794
10 | 10 | 50 | 0.021072 | 128.782
10 | 100 | 50 | 0.021067 | 128.792

The case m =2,k =0



32

Variation of the components

m =1, n = 3/2 case

4.0 ‘ ‘ !
— — - GMC component

o 3.0 ¢ ——— Stellar component
g Gaseous component
= ]
=
o 2.0 F .
c
()
c
o
Q.
S
S

1.0 .

~C
OO i 1 | 1 | 1 |
0.0 20000.0 40000.0 60000.0 80000.0

Time elapsed (104 yr)

Fig. 2.1. Behavior of the three components ¢, g and s as they move toward equilibrium.
The values of the parameters used here are o = 77' =10, o = 100,n =1,p =0.1,6 = 0.5,
and £ = 0.03, while the initial values of the components are ¢(0) = ¢g(0) = s(0) = 0.
Note that the cloud component undergoes a damped oscillation.
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Here, we can solve exactly for the values of ¢ and gy using (2.20) and (2.21), so

that

c = (2.35)

(&) (236)

Thus, we can explicitly see how the value of ¢y — and hence gy — scales with the
parameter 6. However, if we find the eigenvalues of the stability matrix, we find
for the parameters a = 17/ = 5,0/ = 50,7 = 0.5,p = 0.1,§ = 10, we find the
eigenvalues

= 0.00352402, 18.0875, 843.655

Although the first value is very low, and thus a slow-acting mode, it is still negative,
so the system will eventually decay to equilibrium for this choice. Again, this seems

to be generic for all parameters.
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Chapter

T e CF model rationale e uations and arameters

1 he asic e uations

In this chapter, we consider a system of equations that include, not only the
gaseous, GMC, and stellar components, but also radiation r, shockwaves , and light
stars d, with s now being exclusively massive stars. These equations have been developed
in papers by Smolin [91], Freund [34] and Cartin and Khanna [16] — hence, to differentiate
this model from that of Shore and Ferrini, we shall denote it the CFKS model. The
hope is that, by adding in these extra actors and their interactions into a model of star
formation, one can find more interesting behavior. We start with the equations given
below as a template for the variations we will consider, where, to preserve notational
consistency with the rest of this work, we use g to denote the warm gas component,

which differs from the use of in previous papers:

c = all (9,r) ayle,r) Bie ves 6102 (3.1)

g = algr) aylar) - v'es 6/202 8 (3.2)

s = ﬂ;c egc2 S (3.3)
/ /

r o= MmSs ¢1(Ca g,7) (3.4)
’ /

= Mys ¢2(Ca 9, ) (3 5)
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These equations include four functions, to be determined later — the formation rate of
GMCs, given by o/l (g,7), the destruction of clouds by radiation heating 0/2(0,7"), and
the damping of UV radiation ¢/1 (c,g,7) and shockwaves ¢'2(c, g,7) by the effects of the
interstellar medium. We point out now, to avoid confusion later, that we shall use the
convention that the constants o, are the parameters associated with the functions
aq(c, g,7), and we shall always indicate the functional dependence, if any. We also enforce
mass conservation in the ¢ and c? terms by requiring ﬁi = ﬂé ﬁé and 6/1 = 6,2 eg eil.
We have put primes on the various parameters to indicate that, at this point, they still
have units and we have not reparametrized yet. Notice that, unlike in the Shore-Ferrini

model, we have that the amount of matter in the system is explicitly increasing, which

gives us that the change in the total mass is

since we consider the formation of light stars d as a matter sink for the system.

Several of the terms are the same as those we encountered in the Shore-Ferrini
model: cloud-cloud collision 02, heating of clouds by massive stars cs, and the release
of warm gas by supernovae s. However, because we are now treating UV radiation and
shockwaves separately, some of the reactions originally lumped into the massive star

term cs are now independent. We sketch the rationale behind the new terms.

Direct cloud destruction by stars cs g: This represents the effects of stars,
such as stellar winds, which come directly from the massive stars, as opposed to

radiation and shockwaves, which might travel some distance. The main physical
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action behind this term is the ionization and champagne flows of stars formed

inside the cloud [94].

UV radiation, shockwave production s  r,s : The sources of UV radiation
and shockwaves are from SN events from massive stars. These effects are more long
range, although shocks will travel only about 100 pc, while radiation can traverse

the entire galaxy.

Damping terms cﬁ'l(c, ,T) T, 45'2(0, , ) : Because the energy carried by
UV radiation and shockwaves will be dissipated by the interaction with matter, we
include a damping term. At this point, we express this as a function of the warm

gas and cloud densities, but we shall specify some particular cases later on.

Cooling term aq(g,r) c: This term is similar to cooling terms we used in the
Shore-Ferrini model, but now, UV radiation will act as a thermostat, since warm
gas is less like to cool in an environment with a high radiation density. We will

consider several possibilities for the function aq(g,).

Cloud destruction by UV radiation and shockwaves ag(c,r)  g,c s: These
effects are more long-range than the direct cloud destruction used previously. Note
that ultraviolet radiation will ionize the clouds into warm gas, as does the destruc-
tion induced by massive stars, but the pressure due to shockwaves will initiate
new star formation. The heating function o/2(c,r) will act as a counterpoint to
the cooling function 0/1 (g,7), while we treat the action of shockwaves as a simple

reaction term.
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We note some of the simplifications that the model still contains. First, only massive
stars are adding material to the ISM, through the mechanism of supernovae — we are
ignoring the fact that light stars add material via evaporation. The impact of catalyzers
to GMC condensation, such as dust and carbon, is neglected to avoid parameters that
depend on metal concentrations. Because we are now keeping track of more components

than before, a table of the functions is provided in Table 3.1.

Table 3.1.
Component phases of the CFKS model

Cold gas in GMCs

Warm, ambient gas

Massive stars

Light stars

Density of UV radiation

Density of shockwaves from supernovae

T ane o

re ious ersions of the model

Now that we have a system of equations for a template, we can consider various
forms of the heating, cooling and damping functions. In previous works [16, 34, 91], the

functions have assumed the form

2
(g ~ L ayler) ~ear dlegr)~ gr dhleg )~ g (38)
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Thus, we think of cooling being due to the interaction of warm gas with itself — since most
cooling is due to collisional processes — inhibited by the action of UV radiation, with a
decrease in the radiation density leading to an increase in the cooling rate. The heating
of GMCs is considered to be proportional to the radiation density, while the damping of
radiation and shockwaves is also directly proportional to the total gas density (ambient

gas and clouds). Using these functions, we have equations that are of the form [16]

/2
a9
c = 17" ager ﬂic v es 6,162 (3.9)
r 2
_ 9 ! s ) P2 (3.10)
g = " ager Yes  €qc .
5 = ﬁ;c 6502 s (3.11)
/ /
ro= s ¢(c gr (3.12)
/ /
= 158 ¢2(C 9) (3.13)
/ ! 2
d = fac € (3.14)

If we first consider the case 6,1 = 6/2 = €3 = €6 = 0, i.e neglect the cloud-cloud colli-

1

sions [16, 34|, then we can find the steady state values™ to be
Byd’ 5 Ty h By
271 2 "2
0= g 0T g 0T g0 9=~ Lo (3.15)
3 390 RS 2
1 oca se the amo nt of mass increases over time, e ass me that to re ect this. 11

other time derivatives are ero in the steady state.
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where ¢ is a solution of the equation
o bl B 2 ol g ) ol g
1712 73 272 1 . /5! / /217
v By € B, B =0 (3.16)
zr i A R
Because all the parameters are non-negative, we see that, by Descartes rule of signs
that there can only be one real positive root. The procedure used by Cartin and Khanna
was to normalize the components by these equilibrium values, which gives us the set of

equations

c = Y o LA c a r L cs (3.17)
T € € € €
1 1
g = ) eer s a L (3.18)
r € €
1
s = =(c 9 (3.19)
g1¢€ o |
= 2
T o T T (3.20)
g9¢€ g9
= 21
o8 1.6 79 (3.21)

= - (3.22)
coT0 & 0 0 70 0

while is the same parameter as before.
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However, there are several problems with this formalism. One is that, even when
using strictly positive coefficients, one can produce behavior opposite to what was in-

tended. Specifically, the rate of cloud destruction by massive stars is given here by
- = « —_- — (3.23)

which is of indeterminate sign — one can have massive stars creating molecular clouds
instead of destroying them This particular problem is the result of a bad choice of
parameters. When normalized by the equilibrium values, the parameter fy/ 7’90 /coSo-
By using (3.16), we can write this as
/

Y90 _ p 1 (3.24)

€00 € €
which one can see by substituting for the original parameters. But, because, when using
the new parameters, we are completely free to pick values that make (3.23) negative, it
makes more sense to choose a new parameter v = 'y'go /cosp, and, instead, write « in
terms of the other coefficients as a = =y p/e 1/e . This insures that, if the
original parameters are all positive, so will the new set.

Two other problems, however, are more serious. One relates to the physical in-
terpretation of the parameters. For example, from their definitions, we see that € gives
the ration between the equilibrium values of the GMC and warm gas components, while
o1 and o9 are dimensionless values related to the radiation and shockwave output of

a supernova event. Yet these three parameters determine, not only the increase in r
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and due to SNe, but also the damping of these components due to the interstellar
medium — the opacity of these media is now subsumed into the normalization of the
components. The other problem arises when we want to take the results of some cal-
culation in this formalism and convert it back into a physical number. Since we have
normalized by the equilibrium values of the components, we would need to know these
to reverse the process. However, the equilibrium values are functions of nine free param-
eters (0/1, 0/2, ﬁé,ﬁé, A8 ,77'1/¢/1,77’2/¢/2), while we are presuming we started out with
the eight free parameters of our new formalism, («, ,p,€, , ,07,09). By trying to go
from eight to nine numbers, we are left with an extra degree of freedom, meaning that
any results we obtain by numerical calculations in this new model are equivalent to a

one parameter set of physical values.

enerali in the C model

To avoid some of the difficulties mentioned in the last section, we look at a different
scheme to reparametrize our equations. The natural unit of time, as before, is the lifetime
of the massive stars, — which we take to be 107 yr — so we write = , where the
hatted quantities have no dimensions. Because we have a choice of reparametrization,
we could, as we did in Chapter 2, scale by the gas cooling coefficient 1, but we keep
this parameter to allow us to change the effect that radiation will have on the cycling
of matter. Instead, we normalize the matter components by the observed averaged

mass density in the Milky Way galaxy — for the warm gas of the interstellar medium
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and the stellar componentsz, approximately one hydrogen atom per cubic centimeter,
or about 2.3 x 102 pc_3; for the molecular clouds, a density of 100 H cm 3. In
our reparametrization, we assume that the heating, cooling and damping functions are
power laws in the matter components and either linear in, or inversely proportional
to, the energy components; that is (again, note that we are reusing the names of the

functions as the constants of proportionality as well)

o/l(g,r) = a’lg ro1 (3.25)
alz(c,T) = a;c ro (3.26)
and
/
$1( e gr) = ¢(c gr=¢(cgr (3.27)
/
$o( ¢, 9, ) = d5( ¢, g)r= ¢ylc.g) (3.28)
for some constant . The cases o/ ~ r 1 correspond, of course, to the model we

considered in the previous section, while the case o ~ r we will examine later, and is
based on the work of Parravano and collaborators [70, 71]. We keep the other exponents
arbitrary at this point, although, in the cases considered in this work, we have = =1.

With this in mind, we write the components as

The average mass density of stars in the il y ay is act ally a fe times that of the
density[92], b t e ignore this.
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where = = and = are the average galactic mass densities
mentioned above. For the UV radiation, we note that there is a critical radiation density,
at which the warm gas of the ISM is marginally stable for the condensation of molecular
clouds [68, 69]. Because of the important role that clouds play in stellar formation, it
is sensible to normalize by this critical density, which is ~ 7 x 10717 ergs cm™> A in
the 912 1100 A range of the ultraviolet [92]. A natural normalization for shockwaves
is the energy density produced by a Type II SN in the surrounding area. With a kinetic
energy output on the order of 1091 erg [17] which spreads out over length scales of a few
hundred parsecs, this gives a energy density ~ 5 X 10~12 erg cm™3 (this is roughly
the same figure as that given by Abbott [1] and is averaged over the stellar lifetime). So,

if we normalize by these values,

rTr= T =
then our new parameters are now
ﬂl
! 23 !

/ 2 ! /

€ !

234 0 n n

€34=—"— &= =" =t (330

. . ! .
For the various functions, the constants o' are normalized by

o/ 1 a' 1
ay = L gy = —2 (3.31)
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(with  corresponding to a linear proportionality to radiation, and ~1 t6 that of r_l)
while the damping functions will be normalized by the appropriate mass scale, either the
GMC mass density or the warm gas density . As pointed out by Shore
and Ferrini [89], all of these normalized coefficients are nothing but the efficiency of the
process times the rate of occurrence. Dropping the hats for clarity, our equations now

become

c = oq(g,7) ag(e,r) Prc ~es 6162 (3.32)
g = o1(g,7) agle,r) s yes 6202 ) (3.33)
s = fgc 6302 s (3.34)
ro= ms ¢i(cgr) (3.35)

= ms  ¢acy, ) (3-36)

with the light star evolution given as

d = B3¢ 6462 (3.37)

This gives us a total star formation rate

2

()=(B2 B3)c (3 e4)c (3.38)

In what follows, we will not explicitly mention the component d; suffice it to say that we

can always find its value at a particular time from the deficit of mass in the system.
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As an aside, we make a general comment about the relation between () and

the total gas density in our model. Since the total mass of our system is increasing, the

equilibrium rate of mass increase of light stars must be d = §, so that from (3.37) we
can solve for the steady state value of () as

d €4C0

0= Bsco B (3.39)

assuming, of course, that the equilibrium value of molecular clouds is not zero — if it was,
then the star formation rate at equilibrium (7 = 0. Note that, if we require 5 0, we

find a restriction on ¢, namely,
2
< < — (3.40)

Then, placing our value of () into (3.38) gives us that

0 € € €
o= W2_PB3) Pses Paey Z o519 (3.41)
B3 P3 €4
So, as a general result for these system of equations, where there is a steady state solution
of the massive stars and the shockwaves, the equilibrium value of the star formation rate
is dependent not only on the various efficiencies of massive versus light star formation

by cloud-cloud collisions, but also the matter inflow rate to the disk 3.

n the next section, e se 0 25, so that , hichisares It seen by observations
as ell [50].
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h sical processes in star formation

To get some idea of what the (dimensional) values of the parameters listed are, as
well as what types of heating and cooling functions we should examine, we run through
the various physical processes and make estimates of their rates, and list the parameter
ranges in Table 3.2. We will assume that by massive star, we mean a population of stars
with a uniform mass of 20 , an average number which we get from the initial mass
function (IMF). The IMF, denoted by (m) and originally developed by Salpeter [75],
gives the number of stars of a given mass m created in the star formation process and is

usually in the form of a power law

(m) = Am (3.42)

The Salpeter value of v = 2.35 is usually taken as a rough estimate, although there are
suggestions that the IMF might have a bimodal distribution, coming from more than
one method of star production. A lengthy review is given by Scalo [78]. If we take the
Salpeter value, and assume that a massive star is defined to be one which will perish in
a Type II SN — stars with a mass from 8 to an upper limit of ~ 100 — then we
find that the average massive star mass is 20 . An alternative way to judge the ratio
of light to massive star production is to use the rule of thumb given by Larson [51], that
approximately 75-80  of the material going into star formation becomes light stars, and

the rest into massive stars (although by “massive star”, Larson refers to a star of mass
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10 or greater). From this, we can see that

4,03 4 (3.43)
€3 Po

As we mentioned above, there is the possibility that shock-induced formation has a
different IMF than that of cloud-cloud collision, but we shall not consider this.

To get the actual rates of star formation, we note that observations indicate that
somewhere between 1-10  of a molecular cloud condenses into a new star [32, 48]. Thus,

for cloud-cloud collisions

2 10 250 (3.44)
63 64 63

From the condition € =€y €3 €4, we have that

50 1 4
€~ EE€l €3~ pE€l €4 €l (3.45)

while from 8y = 89 33, we have

Bg ~ 0.231 B3 ~ 0.861 (3.46)

We now examine the actual values of these parameters.

Cloud-cloud collisions result mostly from the epicyclic motion of the clouds, with
a frequency of 1077 t0 10~ ylr_1 [11]. Thus, we find that e; = (¢/c)  ~ 0.2- 2 in units
of 1077 yr (the factor of two comes from the fact that two clouds colliding will both be

destroyed), and the other coeflicients, given by (3.30), are eg ~ 0.18 1.8,e3 ~ 0.004 0.4
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and €4 ~ 0.02 0.2. Part of the star-forming process that acts to regulate the rate of
formation is the fact that massive stars will eventually destroy the giant molecular clouds
where they were born, thus inhibiting a new generation of stars. Simulations of the effect
of an O star on a GMC give an estimate of a 3-5 x1073 ylr_1 mass loss from the
cloud per star [99]. Typically, massive stars form in associations of tens of stars, with
a lifetime of about 107 yr and an average mass of 20 . This gives us an estimated
rate of cloud destruction per star around 4 x 10=7 1079 yr_l, and so the range of v
is 3 x 1072 (low amount of material destroyed in a large cloud) to 5 (high amount in
small cloud).

For stellar formation by shockwaves, the remnant of a supernova will push the
material in the ISM before it, forming a dense shell with a mass on the order of 10°
and are a few hundred parsecs in radius in a period of 107 years, although, in a survey of
HI holes in the ISM of M31, Brinks and Bajaja [13] found that the estimated mass and
age of the shells can range from 10° to 107 ,and 2 x 10 to 3 x 107 yr, respectively.
Thus, an average size shockwave would give a coefficient 81 = (c/c)gp, ~ 0.1 10,
which implies 8y ~ 0.02 2 and 83 ~ 0.08 8. Since we normalized the shockwave
component by the typical production of kinetic energy density of a supernova, we have
that 79 ~ 0.02 1, depending on how much of the total energy goes into shocks. As for
the radiative energy, this is also on the order of 10°1 erg, so the amount of radiation per
stellar mass is about 5 x 10 erg —1. This gives a dimensionless 7; ~ 10.

Finally, we look at the parameter §, the mass infall into the system. There are two
reasons to expect that there is some kind of mass flow into the disks of spiral galaxies.

The first is that it is believed that galaxies were formed by the coalesence of matter into
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halos, which then formed galactic disks by the processes of infall and subsequent star
formation. Since the halos still exist, one can suppose that there is still a mass flow. A
second need for this flow is to maintain a roughly constant star formation rate. If the
system is closed, then, eventually, all matter will be locked into stellar remnants and the
star formation process would cease. We can see this with the model we are considering
here. If we solve the model with no inflow of mass into the galactic disk from the halo,
we find that the steady-state solution is ¢y = ( = s = 0; because the light stars act as
a matter sink, if there is no mass inflow, then eventually all the mass is tied up in the
light stars. In this situation, the star formation rate decays to zero, so that the SFR. in
the past must have been much higher than it is at present. Although there are a number
of results for the rate of mass inflow into the disk (see Section 4.3 of Larson [50] for a
review), it seems likely that the infall is around 1 yr_l, which would replenish a
typical galaxy of 1010 in 1010 yr. This amounts to a surface inflow density of about
0.3-0.7 p(:_2 Gyr_l, or assuming a scale height (the thickness of the disk) of about
100 parsecs, then we get & = 0.3 0.7 x 1071 pc_3 yr_1 [50]. After normalizing

by (3.30), we arrive at a value of § ~ 0.001 0.003. A summary of all these parameters

is presented in Table 3.2.

iscussion of heatin coolin and dampin

Now we discuss the various functions in our model that, as yet, have not been
specified. As we have said previously, the clouds act as an intermediate phase between
stars and warm gas, so one of the important areas of star formation is to understand the

conversion process between warm gas and molecular clouds. As mentioned previously,



Table 3.2.

Dimensionless parameters of the CFKS model

m
2

0.1-10
0.02 - 2
0.08 - 8

3%x1072 5
0.2-2
0.18 - 1.8

0.004 - 0.04
0.02 - 0.2
10

0.02-1
0.001 - 0.003

GMC destruction rate by shockwaves
Massive star production rate by shockwaves
Light star production rate by shockwaves

GMC destruction rate by massive star heating

Destruction rate of clouds via collisions

Formation rate of warm gas from cloud-cloud
collisions

Formation rate of massive stars from cloud-cloud
collisions

Formation rate of massive stars from cloud-cloud
collisions

Production rate of UV radiation by SNe

Production rate of shockwaves of SNe

Rate of warm gas accretion onto the galactic disk

50
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work by Parravano [67, 68] has detailed the effect that UV radiation has on the transition
between warm gas and small molecular clouds. By abstracting this finding into a system
of equations, Parravano, Rosezweig and Teran [71] developed a model made of three
components — warm gas , clouds and massive stars . The evolution of

molecular clouds due to heating and cooling in their model is given by

(= (0 ) g( ) (3.47)

i.e. the time derivative of the cloud density is = , where the other terms

are related to star formation, and ( ) and g( ) are functions of the form

1 < g i
= 1 — A4
()= 1 — = . o (3.48)
0 > Vi
and
0 < g >
= 1 - A4
o )= 1 = A (3.49)
1 > Vi
Here, , and , are constants related to the and minimum mass of stars necessary

to evaporate clouds, respectively, while is included to avoid discontinuities in the
two functions. The main point is to relate the density of massive stars to the rate of

condensation and evaporation of small clouds — if the stellar density moves above the
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threshold  , then cooling of the warm gas will cease, while if it moves below the
mass density o , then heating of the clouds will stop.

This is the origin of our original choice o/l (g9,7) ~ 1/r as a simplified version of this
regulatory mechanism. We will examine this dependence, as well as using a Heaviside
step function, and a hyperbolic tangent to give a smoother versionof ( )andg( ).
Since, for all our choices of heating function, ay(c,r) ~ r, we look at the parameter asg
first. Regardless of our choice of the dependence on the components, ag = (¢/c);,  at
the critical UV radiation density. A supernova will typically disperse about 500 of
cloud material, so, with a massive star lifetime of 107 yr and a cloud size of 10* 10 ,
this gives a9 ~ 0.05 0.0005. For the cooling function, we first try to determine what rate
warm gas will condense into clouds. There are several theories of how giant molecular
clouds form, by either collisions of smaller clouds, a dissipative instability in a cloudy
ISM, or else by the pressure from SNe or other shocks [26]. Using a function o/l (g,7) ~ g2
would model the first possibility, while one with a'l (g,7) ~ g would focus on the second.
However, as with ay, the coefficient a1 = (g/9) at the critical radiation density. If
we assume a condensation time of 107 10 yr, then a9 ~ 0.1 1.

Next, we consider the functions ¢1(c, g,7) and ¢9(c,g, ). The damping of radia-
tion and shockwaves reflect how a given amount of gas will degrade the passing of these
effects. The decrease of the intensity of radiation is given by the equation of radiative
transfer,

d = d (3.50)
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where is the optical depth, a unitless quantity related to the blockage of light, given at
a particular wavelength  in terms of the number density n of the absorbing material,
the effective cross section ¢ of the material, and the path length  between the emitting
object and the observer by

=no (3.51)

First, we consider damping only by molecular clouds. The “large clouds” of Spitzer [92]
have optical depths in the ultraviolet range of about 50 per cloud, or, what is probably a
more helpful statistic, around 60 kpc_l. Then, our term for radiation damping is given
by

dr= ¢, rd = ¢r (3.52)

Here, we have written the mass density of clouds as to avoid confusion with the speed
of light ¢, and the second step using the GMC mass density as a normalization constant.
Thus the parameter ¢ is simply the optical depth of emitted UV radation; however, the
equation is implicitly assuming that the radiation passes through GMC density material
for 107 yr, which is not the case in a typical galaxy, where light can travel from one side
to another in about 10 yr, and the thickness is only about 100 pc. So we reduce the
optical depth by a factor of 103, and find that ¢; ~ 0.6. If we do the same calculation
for the damping of the ISM, we find again around 0.6 — the reason for this is that the
optical depth of the interstellar medium is 100 times less than that for clouds, but so
is the density. The decrease in density cancels that of the optical depth, so when we

assume the form ¢’1 =¢1 cr ¢1 gr, the two coefficients are approximately equal.
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The extinction of radiation A is related to the optical depth, and defined by
0

Using an equation like this, we can do the same type of analysis with shockwaves and
define a “shock depth”. Inside a cloud, the decrease in the amount of kinetic energy is
proportional to the ratio of the densities inside and outside the cloud. For a GMC, with
a density of ~ 10 100 times that of the ISM, the kinetic energy is reduced roughly by
50, compared to its value in the interstellar medium (see, for example, the recent paper
by Klein et al. [45]). If we define a “shock extinction”  as is done for radiation in
(3.53), then for clouds, ~ 4.2. So, we define a shock depth , by ~ 1.086 4, and
use the same type of argument as with radiation. Again, looking first only at the case

of clouds, we have

dg=¢y d = (3.54)

giving, for the shock travelling a typical distance of 10 - 100 pc in 107 yI, ¢9 ~ 0.4. This
value is much smaller than those for ¢; because shockwaves travel much slower than
UV radiation. We use the assumption that, when we include the density of warm gas,
that there is a cancellation similar to that of the parameter ¢;. A summary of all these

parameters is presented in Table 3.3.

peci c choices of C models

We have a general framework in which to study the CFKS model under various

cases of heating, cooling and damping functions. First, we shall re-examine the choice



Table 3.3.
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Dimensionless parameters of the heating, cooling and damping functions in the CFKS

model

o 01-1 Rate of GMC increase

a9 5x1072 107* | Rate of GMC decrease

o 0.6 Average optical depth of UV radiation

b9 0.4 Average “shock depth” of SNe shockwaves

of Section 3.2, i.e. heating inversely proportional to radiation. Then, we look at heating

and cooling terms based on the work of Parravano and collaborators [70, 71], described

in the last section. In this spirit, we look at two variations of the heating and cooling

parameters: the choices of (1) a Heaviside step function and (2) a hyperbolic tangent,

both functions of the radiation density.

Before we begin with these specific choices of heating and cooling functions, we

note how the selection of the damping functions affects the mathematics of solving for

the equilibrium solution. First, if we choose damping functions dependent solely on the

GMC density, and not on the amount of warm gas, then we have as our equations

Boc €3¢’ s
ms  oier
ns  pac

Bac  e4c

(3.55)
(3.56)
(3.57)

(3.58)
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To find the equilibrium solutions, we set s =7 = =0 and d = § — the last to reflect
the continual inflow of warm gas from outside. Now we solve for the steady state values

in terms of ¢g; first, from (3.58), we have

0= ﬂ:fco 64/3;,0 (3.59)
For s(;, we have from (3.55) and (3.59) that
s0 = Bacy o 636(2) = %: €3 ﬁ;? cg (3.60)
while from (3.57),
-t t 8 6;;;3 @61

Thus, if we use both (3.60) and (3.61), we find an equation for the root of ¢, which is

¢ 2 ¢
Byes €4 2 By cg=0 2 By (3.62)
12 n2
Finally, from (3.56), we can solve for r( in terms of c:
— B
172 172 Baes €4 — Bo

Without even knowing what heating and cooling functions to use, we have solved for the
equilibrium values of most of the components; the value of gy can be found from either

the equation ¢ = 0 or ¢ = 0. Note that there is a caveat with this: if the heating and
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cooling functions are such that, for example, ¢ = 0 when the components are at the values
that give s =r = =0 and d = 4, then we have not truly found the equilibrium for
the entire system. This will be a possibility when we consider step functions for aq(g,7)
and ay(c,r). Also, if ¢9 > B9n9, then we have a single (real and positive) equilibrium
solution. If this is not the case — say that ¢9 = 0 — then we have insufficient damping of
shockwaves.

When we consider the case where the damping functions depend on both the
warm gas and the GMC components, the math is not so simple. We have no difficulty
solving for (y as in (3.59) and s( as in (3.60), and the relation (3.63) remains true as
well. However, since the damping functions now depend on g, we cannot find a second
equation for sy in terms of ¢y, and thus derive a formula for the roots of c¢;. Instead,

using the equation

=128 ¢a(c g (3.64)

then we can solve for g in terms of ¢, to get

3
_mso . _m B33 Brca)sy Pade

= = C 3.65
0 $arg 0 $9 B 640(2] 0 (3-65)

Now we need a second equation for gy — and hence the form of the heating and cooling
functions - to be able to finally pin down c.
With this in mind, we look at the various choices for the functions aj(g,r) and
ay(c, ). First, we re-examine the CFKS model, i.e. choosing
2
_ %19

ay(g,r) = " ag(e,r) = ager
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As we mentioned previously, when the damping functions depend only on the GMC
component, then there is a steady state solution only when ¢9 > Bong, so we look
at both the equilibrium and non-equilibrium solutions, always starting with the initial
conditions 7( = 0) = 1 and all others zero. In Figures 3.1 and 3.2, we choose parameters

such that an equilibrium solution exists; by plugging in these values, we find that

co=0.132 gy =0.0479 7y =0.0630 sy =0.000500 (= 0.00567 (3.66)

To put these normalized numbers into context, we convert them back into physical units

to find for the matter quantities that

=304x10"% pc 3 gy=110x10"2 pc® sp=115x10"°  pc°

(3.67)

and for the energy densities,

3 3

ro=2.76 x 10 %V em™> ;=178 x 10 %eV cm

The UV radiation density is about a factor of a hundred smaller than the the
observed value, which is about 0.5 eV em ™3 [67]. However, since we have a range of
about an order of magnitude on either side of our parameter choices, it is entirely feasible
to find a better choice of coefficients. With the matter densities, the results given in (3.67)
are closer to observed values. For example, the total density of warm H I gas is about
0.16 H cm_3[59], versus the value gy ~ 0.05 cm ™3 given. The figure for molecular clouds,

~0.13H cm_3, is also about a factor of 4 off from the observed ~ 0.4 H cm™3 [19]. Yet,
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again, it is likely we can find parameters that give the required change in magnitude; it
is reassuring to know that our first selection of parameter, picked solely as an example
in the “middle” of the possible choices, leads to equilibrium values within an order of
magnitude of what is observed in the Milky Way. We will see later how different choices
of heating, cooling and damping functions, affect the equilibrium values, when we use the
same parameters. Recall that there is still the possibility that there is no equilibrium:
in Figures 3.3 and 3.4, our choice of parameters gives no steady state solution. Here
c 0, while warm gas, radiation and shockwaves will increase without limit and the
number of massive stars will remain constant. However, these cases are when damping
time scales are greater than those of energy production. We will simply comment that
this might be cancelled out by the future inclusion of metallicity into the system, since
high metallicity clouds would be more effective at damping shockwaves than those with
low metallicity. As the net number of SNe increase, so would the density of metals, thus
increasing the damping coefficient and preventing such an unlimited rise in the warm
gas, radiation and shockwaves.

However, as we saw when we discussed the parameters above, both the GMCs
and the ISM make approximately equal contributions to the damping of radiation and

shockwaves, so our damping functions should look more like

¢1(c,g,r) = ¢1(C g)"" ¢2(C’g’ ) = (;52(6 g) (3'68)

We have seen previously what happens if we make this choice and neglect cloud-cloud

collisions, and we discussed above the steady state values for rg, ,sq and gg. By using
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Variation of the components

Cooling function r™

1.0 ‘ ‘ ‘ ‘ ‘
—— GMC component |
— - — Warm gas component
0.8 - Radiation component | |
I
e
o
S
S 06 - |
©
)
c
2 04 .
o
o
S
@]
o
0.2 - i
00 - _ I | I | I | I
0.0 100000.0 200000.0 300000.0 400000.0
Time elapsed (104 yr)
Fig. 3.1.  Variation in the radiation, warm gas and GMC components as a func-

tion of time, with the cooling rate inversely proportional to radiation and the damp-
ing dependent only on the GMC component. The parameters for this graph are
a1 = .5,042 = .005,ﬂ1 = 1,,82 = .2,’)/ = .4,5 = .002,61 = 1,62 = .9, €3 = .02,’/]1 =
10,79 = .6,¢1 = .6,¢9 = .4. This choices gives us ¢o9 > [9n9, so that an equilibrium
solution exists, which is reached by about 1.5 x 10° yr.
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Variation of the components

Cooling function r™
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Fig. 3.2. Variation in the massive star and shockwave components as a function of time,
with the cooling rate inversely proportional to radiation and the damping dependent only
on the GMC component. The parameters for this graph are a; = .5, a9 = .005,81 =
]_,,82 = .2,’)/ = 4,(5 = .002,61 = 1,62 = .9,63 = .02,7’]1 = 10,’/]2 = .6,(]51 = .6,(]52 = 4.
This choices gives us ¢9 > 979, so that an equilibrium solution exists, which is reached
by about 1.5 x 10° yr.
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Cooling function r™
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Fig. 3.3. Variation in the radiation, warm gas and shockwave components as a

function of time, with the cooling rate inversely proportional to radiation and the
damping dependent only on the GMC component. The parameters for this graph are
] = .1,012 = .005,,31 = 10,ﬁ2 = 2,’)’ = .3,(5 = .002,61 = .2,62 = .18,63 = .004, m=
10,79 = 1,¢1 = .6, ¢ = .4. Because of this choice, ¢9 < B9n9, and therefore there is no
equilibrium solution — the warm gas component will increase without limit, fed by the
matter inflow into the system, while the cold gas decreases to zero and the massive star
population becomes constant.
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Variation of the components

Cooling function r™
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Fig. 3.4. Variation in the GMC and massive star components as a function of time,
with the cooling rate inversely proportional to radiation and the damping dependent only
on the GMC component. The parameters for this graph are a; = .1, a9 = .005,81 =
10,ﬁ2 = 2,’)’ = 3,5 = 002, €1 = .2,62 = .18, €3 = .004,’/]1 = 10,772 = 1,(]51 = .6,¢2 = 4.
Because of this choice, ¢9 < 979, and therefore there is no equilibrium solution — the
warm gas component will increase without limit, fed by the matter inflow into the system,
while the cold gas decreases to zero and the massive star population becomes constant.
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the form of g in the equation ¢ = 0, we find that c( is the root of a ninth order equation,

9
cOZO
0
where the coeflicients are
0 = ol o o 9)
B 3
1 = 7 00
2 = ol 3200 o o 0 of2
2
3 = ol 320 o 9 ol
4 = 392 2leeg g 9)
5 = Bvyog0 3vg22 2 ¢

and we have defined the coefficients by

_ ¢am 6
0 P1m2 B3
, = ddm
B3 $1 1M

9By

0 — /33

(3.69)

(3.70)
(3.71)
(3.72)
(3.73)
(3.74)
(3.75)
(3.76)
(3.77)
(3.78)

(3.79)

(3.80)

(3.81)

(3.82)
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s = e ﬂ;_;‘i (3.83)
. = qflLﬂlg 8 j‘;_j (3.84)
_ Z_i 0 o (3.85)
_ % . (3.87)

Since this is a ninth order polynomial, we can only solve it numerically, and indeed, it is
difficult to say even qualitative things about the roots. By solving this equation for c
with randomly selected parameters, it seems that generically, there is only one root of ¢
that gives all the equilibrium values as real and positive. If we use the same parameters

as in Figures 3.1 and 3.2, we find that numerically that the equilibrium solution is

co=0.139 gy =0.0474 7y =0.0459 sy =0.000500 (= 0.00413 (3.88)

Notice that the values for ¢, gg, and sp are not much different than the previous case,
the only major changes being in rg and (), both with a 31  decrease because of the
extra damping due to the additional warm gas terms in (3.68). It seems that by changing
the damping functions, to include the effects of both warm and cold gas, we do not see
much of a resulting difference in the matter equilibria. One would guess that this is
because the warm gas equilibrium is one-fourth that of the molecular clouds, and so,
does not have a great impact on the final answer. Thus, if we wish, we can study the

previous model — where it is possible to analytically find the steady state solution —
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with the expectation that our results, at least for the material components, will not vary
greatly from the more physical, albeit more complicated, equations where only the cold
gas causes damping. We can see how the system evolves in Figures 3.5 and 3.6.

Now, to incorporate a Parravano-type scheme into the equations, we try using a
step function to determine the amount of heating and cooling — that is, if the density
of UV radiation is greater than the critical density, then heating will be promoted and
there will be no cooling, and vice versa if the radiation density is less than the critical

value. Then

ay(g,r) =a9 (1 1) as(e,r) =age (r 1) (3.89)

Although this is a rather unphysical situation, the mathematics are simple enough so we
can understand qualitatively the origin of oscillations. Notice that with this choice, for

r > 1 at a particular time, then we have

c = agc fic yes  €c (3.90)

g = oagc s 7cs 6262 ) (3.91)

i.e. ¢ 0Oand g 0. Thus, if the damping of radiation is insufficient to lower it below
the threshold r = 1, then the GMC density will decrease, and the warm gas will increase,

fed by the mass inflow into the galaxy. Suppose we first look at damping functions

#1(c,g,m) = prer da(c,g, ) = doc (3.92)
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Variation of the components
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Fig. 3.5. Variation in the radiation, warm gas and GMC components as a function of
time, with the cooling rate inversely proportional to radiation and the damping depen-
dent on both the GMC and warm gas components. The parameters for this graph are
a] = .5,042 = .005,ﬂ1 = 1,,82 = .2,’)/ = .4,5 = .002,61 = 1,62 = .9, €3 = .02,’/]1 =
10,79 = .6,¢1 = .6, 9 = .4. These are the same values as in Figure 3.6, and result in a
comparable graph — because the warm gas component is a fraction the size of the GMC
component, it is not as important a factor in the damping of radiation.
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Variation of the components
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Fig. 3.6. Variation in the massive star and shockwave components as a function of time,
with the cooling rate inversely proportional to radiation and the damping dependent on
both the GMC and warm gas components. The parameters for this graph are a; =
.5,0(2 = 005,,81 = 1,,82 = .2,’7 = 4,(5 = 002, €1 = 1,62 = .9, €3 = .02,7]1 = 10,772 =
6,1 = .6, p9 = .4. These are the same values as in Figure 3.6, but, unlike the previous
graph, both the time scale of change and the final magnitudes are different than Figure
3.6.
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The behavior of the system will depend on the value of 5. Because of the form of the
damping functions, we can solve for r( using (3.63). If 5 1, then it is possible to find

a value of gy which gives ¢ = g = 0, given by

1 2

= — 3.93
90 o Bico 0 Yc0%0 €1 (3.93)

1 Paeg 3 Bieg 2 P2d p1o
= — € —“= c € c c — 3.94
0‘1 Y 3 ,83 0 1 ,83 0 183 0 /83 ( )

for ry <1, and

1 Poey 3 Pies 2 VPad p1d

go = — € c € — C « —= ¢ — 3.95

when rg = 1. Thus, the system goes to equilibrium at some time. However, if rj > 1,
then it is impossible to find values of the components which give ¢ = g = 0, as we can
see from the form of the equations (3.90) and (3.91). In this case, when r > 1, the GMC
component will decay — and thus so does the star formation rate — while the warm gas
density will increase. However, since the damping of radiation and shockwaves depends
only on the GMC density, the rapid falloff in the GMC and massive star components will
give a corresponding decrease in r and . Thus, as can be seen in Figures 3.7 and 3.8,
if rg > 1, then at some point in the evolution, r, 0 and ¢,s 0, while g increases

without limit, due to the inflow of matter 9.
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Variation of the components
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Fig. 3.7. Variation in the GMC, warm gas and radiation components as a function
of time, with the heating and cooling rates given by a step function and the damping
dependent only on the GMC component. The parameters are oy = a9 = 1,5; =
0.5,89 = 0.05,7 = 0.3,0 = 0.002,¢; = 1l,e9 = 0.9,e3 = 0.01,7; = 8,m9 = 1,¢1 =
0.01,¢9 = 1. Once r = 1, the GMC component rapidly falls off while the radiation
density stays constant and the warm gas increases without limit.
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Variation of the components
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Fig. 3.8. Variation in the massive star and shockwave components as a function of time,
with the heating and cooling rates given by a step function and the damping dependent
only on the GMC component. The parameters are a; = g = 1,81 = 0.5, 89 = 0.05,y =
0.3,(5 = 0.002,61 = 1,62 = 0.9,63 = 0.01,’/]1 = 8,772 = 1,(]51 = 0.01,(]52 =1. Once r = 1,
at about 2.5 x 10° yr, the massive star component rapidly falls off while the shockwave
density becomes constant.
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To prevent this runaway increase in warm gas, we can modify our damping func-

tions to be dependent on both warm gas and clouds:

¢1(c,g,7") = ¢1(C g)’f‘ ¢2(Caga ) = ¢2(C g) (396)

Because of the inclusion of the warm gas components into the damping functions, we
cannot solve for the equilibrium value of ¢, and hence all the other components, unless
we assume that ¢ = g = 0 — that is, by assuming that 7 1. If we find that there is
a consistent solution to setting all the evolution equations equal to zero, then again, we
have a situation where the system will eventually reach a steady state. An example of

this is shown in Figures 3.9 and 3.10. In this case,

cg=0.138 g9 =10.0396 ry=0.0468 sy =0.000500 = 0.00421 (3.97)

These are similar in magnitude to the values we saw with the inverse radiation cooling
function, although there is a 20 percent decrease in the warm gas and a 30 percent
decrease in the radiation and shockwave densities. The relative constancy of the GMC
component, regardless of choice of heating, cooling and damping functions would suggest
that the clouds are insensitive to the actual physics of the system, at least when consider
in small volumes where the spatial dependence of material is not important. The differ-
ences are most apparent in the radiation and shockwave components — where changes
in damping are most felt — and in the warm gas — with its dependence on how the gas

is cycled between temperatures. Thus, from the results of these models, it seems that
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the observated values of warm gas, radiation and shockwaves can not only restrict the
choices in the parameter space, but also can help pin down which of the physically likely
methods of energy damping and temperature change in the ISM are the most effective.

However, if there is not a consistent solution, things become more interesting.
When the damping functions depended only on the GMC component, the runaway in-
crease in the warm gas could not affect the change in the radiation and shockwaves; now,
however, if the warm gas density increases without limit — even though the GMC density,
and thus the massive star formation rate, goes to zero — this will result in more damping
of the radiation and shockwaves. The radiation density will actually decrease, and once
it goes below the critical 7 = 1 point, then the GMC component will now increase and
the warm gas will decrease. Our addition of the warm gas into the damping functions
has resulted in a cyclic situation, a particular case of which is graphed in Figures 3.11,
3.12 and 3.13. Notice that, when the radiation density crosses the critical value r = 1,
then there is an abrupt change in the slopes of the warm gas, GMC and massive star
components. If we could make an argument based on physical grounds that there is such
a heating and cooling mechanism, then it is possible that this might be a potential cause
of starburst galaxies. However, since a Heaviside function is more abstract than realistic,
it seems that an explanation for this behavior should be found elsewhere.

To have more physical heating and cooling functions and give continuous changes
in the components, we make the choice of a hyperbolic tangent, which approximates
the piecewise linear functions used by Parravano [70, 71], but makes linearized analysis

possible around the equilibrium. Thus, we assume that the functions a4 (g, 7) and agy(c, )
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Fig. 3.9. Variation in the radiation, warm gas and GMC components as a function
of time, with the heating and cooling rates given by a step function and the damping
dependent on both the warm gas and GMC components. After about 2 x 10° yr, the com-
ponents are essentially at equilibrium. The parameters are o7 = 0.5, a9 = 0.005, 31 =
1,9 = 0.2,y = 04,6 = 0.002,e; = 1l,e9 = 0.9,e3 = 0.02,77 = 10,79 = 0.6,¢1 =
0.6, 9 = 0.4.
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Variation of the components
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Fig. 3.10. Variation in the massive star and shockwave components as a function of time,
with the heating and cooling rates given by a step function and the damping dependent
on both the warm gas and GMC components. After about 2 x 109 yr, the components
are essentially at equilibrium. The parameters are a; = 0.5,9 = 0.005,5; = 1,89 =
0.2,7=0.4,0 =0.002,e1 = 1,e9 = 0.9,e3 = 0.02,77 = 10,79 = 0.6, 1 = 0.6, p9 = 0.4.
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Variation of the components
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Fig. 3.11. Variation in the stellar, warm gas and GMC components as a function of time,
with the heating and cooling rates given by a step function and the damping dependent
on both the warm gas and GMC components. The components oscillate with a period
of 3 x 107 yr. Note the qualtitative similarity with Figure 6 of Ikeuchi et al. [40]. The
parameters are a; = 31 = 1 = 10,9 = 0.005,89 =79 = 1,7 = 0.3,0 = 0.002,¢7 =
0.2,e9 = 0.16,€e3 = 0.004, ¢1 = 0.6, and ¢9 = 0.4.
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Fig. 3.12. Variation in the stellar, warm gas and GMC components as a function of time,
with the heating and cooling rates given by a step function and the damping dependent
on both the warm gas and GMC components. The components oscillate with a period
of 3 x 107 yr. Note the qualtitative similarity with Figure 6 of Ikeuchi et al. [40]. The
parameters are a; = 31 = 1 = 10,9 = 0.005,89 =79 = 1,7 = 0.3,0 = 0.002,¢7 =
0.2,e9 = 0.16,€e3 = 0.004, ¢1 = 0.6, and ¢9 = 0.4.
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Fig. 3.13. Variation in the stellar, warm gas and GMC components as a function of time,
with the heating and cooling rates given by a step function and the damping dependent
on both the warm gas and GMC components. The components oscillate with a period
of 3 x 107 yr. Note the qualtitative similarity with Figure 6 of Ikeuchi et al. [40]. The
parameters are a; = 31 = 1 = 10,9 = 0.005,89 =79 = 1,7 = 0.3,0 = 0.002,¢7 =
0.2,e9 = 0.16,€e3 = 0.004, ¢1 = 0.6, and ¢9 = 0.4.
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are of the form

ay(g,r) = - 1 tanh[o(r 1)] (3.98)
ay(e,r) = % 1 tanh[o(r 1)] (3.99)

Now, in addition to the heating and cooling rates . , we now have a parameter ¢, which
determines the slope of the functions as r increases — the limit o would give the
Heaviside function again, while ¢ = 0 means the heating and cooling rates are constant,
regardless of the radiation density. Since, as pointed out previously, if the damping
functions depend only on the GMC density, then the results for most of the steady state
solutions are already known and one simply has to solve for gg. Thus, we only consider
the case when the damping depends on both the GMC and warm gas densities. We

substitute (3.65) into the equation ¢ = 0 to give

a; 1y B3z Pacg)cd  Padcy

0 = — = C 1 tanh[o(rg 1
. . 0 ot 1)
92 1 tanh [o(rg 1)] S v €3 Paca 3 (3.100)
2 (3] ,33 0

Pieg 2 B2s P18
61 ,83 CO ,83 C ,83

where ry = r((cg). So we end up with a transcendental equation for the value of ¢, but,
aside from solving for this root, the situation is not much different than when we used
a cooling function inversely proportional to radiation — the system reaches equilibrium

with values based on the real positive root we find from (3.100). Yet, as we can see from
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Figures 3.14 and 3.15, we again have much the same behavior as before. Using the same

parameters as Figures 3.1 and 3.2, we find that

cg=0.138 g9 =0.0396 73 =0.0468 s5=0.000500 (= 0.00421 (3.101)

These values are exactly the same as the equilibria of the step function seen previously;
this is not too surprising, since we are using the hyperbolic tangent to smoothly approx-
imate the Heaviside heating and cooling functions.

Because we have been through quite a number of formalisms in this chapter, it
is perhaps fitting to catch our breath and summarize what we have accomplished. We
started with a system of equations, modeled after chemical reactions, which encoded
the various flows of matter and energy in the galactic disk that are important for star
formation. In particular, we focused on some possibilities in our choices of heating
and cooling functions — inversely proportional to radiation, or the inclusion of a critical
radiation density, either by a step function or a hyperbolic tangent — and damping
functions — with interaction solely with molecular clouds, or with both GMCs and the
interstellar medium. Several of the choices led to a steady state situation, while others
gave runaway increases in a component, or even a cyclic system. However, the main
goal of this work is to explore how spiral structure can arise in galaxies, so in the next
section, we build upon this work on the CFKS model in numerical simulations of the

equations on a two-dimensional annulus.
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Variation of the components
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Fig. 3.14. Variation in the GMC, warm gas and radiation components as a function of
time, with the heating and cooling rates given by in terms of a hyperbolic tangent and the
damping dependent on both the warm gas and GMC components. The parameters for
this graph are ay = .5,a9 = .005,81 = 1,8y = 2,7 = 4,0 = .002,¢; = 1,69 = .9,€3 =
02,71 = 10,19 = .6,¢1 = .6,¢9 = .4, and o = 700. In this graph, the components
eventually decay to reach an equilibrium state.
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Variation of the components
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Fig. 3.15. Variation in the GMC, warm gas and radiation components as a function of
time, with the heating and cooling rates given by in terms of a hyperbolic tangent and the
damping dependent on both the warm gas and GMC components. The parameters for
this graph are ay = .5,a9 = .005,81 = 1,8y = 2,7 = 4,0 = .002,¢; = 1,69 = .9,€3 =
02,71 = 10,19 = .6,¢1 = .6,¢9 = .4, and o = 700. In this graph, the components
eventually decay to reach an equilibrium state.
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Chapter

T e CF model numerical simulations

“Frankly it is hard to imagine anyone actually using the [Routh-Hurwitz]

conditions for polynomials of order five or more.”

— J. D. Murray, athematical iology

So far in this work, we have looked at only one-zone models of star formation.
This gives us an idea of how the CFKS system of equations works as a model of a small
region of space, such as the solar neighborhood. However, since we aim to use it to study
the formation of spiral structure, we now turn to models with spatial extent by making
the actors in star formation, as well as the evolution equations themselves, depend on
position in the galactic disk. Because the scale height of the Milky Way is much smaller
than that of the radius of the disk, we consider the model on a two-dimensional annulus,
leaving out the galactic bulge since it has little influence on the star formation in the disk.
Therefore the component functions we considered in the last chapter are now functions

of the radius p and the angle , in addition to time :

c=clp, ;) g=glp, 5) s=s(p,;) r=1p ;) = (p, ;)

Note that the radius and angle, along with the angular velocity (p) in the disk, will

the only Greek letters that are not parameters of the model. As mentioned in the
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Introduction, a method used in chemistry and biology to study pattern formation is to use
reaction-diffusion equations — that is, to add diffusion terms to the reaction system. This
is a useful type of model, because it can produce both wave-like solutions and pattern
formation, and there is a large literature on the subject from biology and chemistry
(along with some work in astrophysics). Here, we hope to create spirals via pattern
formation; since the components to diffuse as they interact, and will diffuse at different
rates, some modes in the system can become unstable and form patterns. For a wide
variety of examples in biology, see Murray [62].
Thus, we start with the CFKS system, with the addition of diffusion terms to
some of the equations; because we are in a rotating system, with angular velocity (p),

we must use the convective derivative, so that the evolution of the components is given

by
c c a192 2
— (p— = ager  fic yes  €c (4.1)
r
g (p)—g - a9 ager s ycs 6202 ] (4.2)
T
s s 2 2
— (p)— = Pac €3¢ s Dg “s (4.3)
T T 2
— (p)— = ms ¢1(c,9,7) D, “r (4.4)
2
- (p)_ = m2s ¢2(Caga ) Ds (45)
where the two-dimensional Laplacian acting on a function = (p, ) is
2 _ 12
=, P, 2 2
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and our choice of a constant linear velocity to approximate the physical situation implies
(p) ~ p_l. One may wonder about the propagation of radiation as a diffusion term,
but, as pointed out in the Introduction, elliptic equations can have wave-like solutions.
Also, despite the fact that the evolution equations have Laplacians in only three of the
components — s, , and r — does not mean that the others will reach a spatially constant
value. For example, note that if there is a large value of the Laplacian of the massive
star component s at one point and a particular timel, this will lead to an increase in
s immediately, which then affects the other components via their evolution equations.
Thus, although the spatial dependence is overtly needed only in three equations, because
the reaction rates are all interdependent, then all of the functions will have some variation
across the disk, which we will see later.

As a first step toward finding out about the system, we linearize these equations
about their equilibrium values, which we know from the previous chapter. This gives
us the stability matrix of the system, whose eigenvalues are the rates at which the
various modes will grow (> 0) or decay ( < 0). For systems of equations with
a small number of components, one can use the Routh-Hurwitz conditions [55] to see
when there are unstable modes of the system; however, this quickly gets unwieldy for
larger numbers of functions, giving rise to the quote by Murray. Because of the great
number of parameters, and the fact that there are five components — and hence the
characteristic polynomial of the stability matrix has to be solved numerically — there
is no analytic way to fully explore the parameter space for choices that have unstable

modes. As a method of understanding how varying each parameter singly might affect

I This might occ r if there is a b rst of star formation hich then di seso t ard.
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the outcome, we choose our usual set of coefficients towards the center of the parameter

space,

a1 =05 as=0005 Bly=1 B=02 y=04 6=0002 ¢;=1  (4.6)

€9 = 0.9 €3 = 0.02 m= 10 9 = 0.6 ¢1 =0.6 ¢2 =04 (47)

and diffusion constants given by

D=1 D, =10 (4.8)

where we use 100 pc as the basic unit of length.

From Figure 4.1, we can see how the maximum real eigenvalue (MRE), found
using the characteristic equation, changes with the logarithm of the wavenumber k&, i.e.
y = log(k), and thus the length scale, remembering that wavenumber is an inverse length.
The graph shows that there are no unstable modes since the MRE is always negative
(and therefore, all the eigenvalues are as well), but that there are some modes, with
length scales between 10 and 1000 pc, which decay slower than the others, with a very
small, albeit negative, . Next, in the following graphs, given in Figures 4.2 through
4.12, we look at how the MRE changes with wavenumber if we vary the coeflicients one
at a time, keeping all other parameters at the values given in (4.6), (4.7) and (4.8).
Thus, for example, in Figure 4.2, we look at the value of the MRE with respect to y as
the parameter a; runs between 0.01 and 100. Although we cannot examine the entire

parameter space this way, it gives us some idea of which coefficients change the MRE the
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most. As we examine the graphs, we see that, even though there are some alterations
of the MRE dependence on the wavenumber, it seems that for physically reasonable
coefficients and length scales (i.e. within the disk of the galaxy), there are no unstable
modes. Thus, any spiral patterns that arise in the disk due to outside influence would
eventually be washed out, once the galaxy is again “isolated”. Note that because the
author had problems convincing Mathematica to vary the parameters 8 and € , due to
the relations 81 = 5 3 and € = €9 €3 = ¢4 evidently being difficult to enforce
numerically, we show a graph of the MRE versus wavenumber for the extremities of the
parameter ranges for § and e . These graphs are given as Figures 4.13, 4.14 and 4.15.
To study this further, we run a numerical simulation with the values above, save
for the fact that we use a mean field approximation for the radiation density, averaging
the radiation across the annulus to avoid problems with the large diffusion constant D,..
As initial data, we take as initial data for the warm gas (p, ) ~ exp( p/pg)sin(2 ),
with all other components starting at zero and py = 20 kpc. The annulus has an inner
radius of 5 kpc and an outer radius of 15 kpc, and is differentially rotated at a constant
rate v = 3 x 1073 pc yr, approximately the value in the Milky Way. As we can see
from the plots of the warm gas and massive star components, the beginning spatial
variation in the warm gas gives rise to an accompanying variation in the massive stars.
However, both components — and the others not plotted — eventually decay, until all are
homogeneous across the annulus, which happens after about half a billion years, or a
little more than two rotations of the galaxy. To understand this result better, we pick a
specific radius, 10 kpc from the center of the annulus, and graph the angular variation

of the warm gas (using the choice of a cooling function inversely proportional to the
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radiation, and a Heaviside heating and cooling function), along with what the initial
data would look like if it were differentially rotated without the influence of the model.
As one can see from Figures 4.25, 4.26 and 4.27, for our particular choice of parameters,
the model does not change the angular progression of the sinusoidal phase, but instead
simply changes the magnitude of the warm gas until it finally reaches equilibrium. Thus,
the diffusion is not strong enough to resist the winding effect of the differential rotation,

and the spiral arms eventually wrap up until the structure is not visible.
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Fig. 4.1. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the logarithm of the wavenumber k. Although the MRE is negative for all
possible wavenumbers represented, the range of length scales between 10 and 1000 pc is
the least negative, indicating that these modes fall off the slowest.
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Fig. 4.2. Variation of the maximum real eigenvalue (MRE) of the stability matrix as
a function of the parameter oy and the logarithm of the wavenumber k. There is at
least an order of magnitude change in the MRE as «q varies, so it seems that the time
scale of warm gas cooling is important in the physical results of the evolution equations.
Thus, the variance in the equilibrium values obtained in the one-zone models of the last
chapter would probably be dependent on the choice of cooling functions.
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Fig. 4.3. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the parameter a9 and the logarithm of the wavenumber k. The shape of the
curve does not vary greatly as ag changes, which suggests that the model is insensitive
to the rate at which GMCs are heated. Therefore, the selection of a heating function
does not appear to be as critical as that of the cooling function.
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Fig. 4.4. Variation of the maximum real eigenvalue (MRE) of the stability matrix as
a function of the parameter v and the logarithm of the wavenumber k. The shape of
the curve does not vary as v changes. Since <y is the rate of the heating of clouds by
stars — similar to the process governed by a9 — then we would expect the result to be
similar, that only the flow of matter from warm to cold gas is of great importance in
these models.



93

Fig. 4.5. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the parameter § and the logarithm of the wavenumber k. Because ¢ gives the
matter flow that is added to the disk, then from this graph, we would expect that when
there is more flow (higher ¢), the system decays faster into equilibrium. This makes
sense if we think of this external flow rate as giving the rate at which the processes in
the disk occur.
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Fig. 4.6. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the parameter 7; and the logarithm of the wavenumber k. Notice that there
is a difference in the perspective with this graph, compared to those previously — here,
the MRE has a smaller magnitude with increasing 7y, compared to the opposite with
a7 and 6. Since the production of radiation inhibits the cooling of warm gas, the more
radiation per SN event means the system decays at a slower rate.
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Fig. 4.7. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the parameter 79 and the logarithm of the wavenumber k. Although for low
wavenumbers, the change in 79 seems to be similar to 7y, it has the opposite behavior
for large wavenumber — namely, that the MRE increases in magnitude as 19 increases.
Since this happens right around the length scales the shocks can diffuse with our choice
of Dy, within 107 yr, this seems to be an indication of how the shockwaves act in the
system, namely, inhibiting the rate of decay for large length scales and increasing it for
short scales.
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Fig. 4.8. Variation of the maximum real eigenvalue (MRE) of the stability matrix as
a function of the parameter ¢ and the logarithm of the wavenumber k. As we might
expect, the change in the damping rate of UV energy has an opposite effect on the MRE
as does the radiation production rate 1y, and in fact, the graphs are essentially mirror
images of the other: here, the MRE decrease in magnitude with decrease in ¢, while it
increases in magnitude when 7; decreases. Whatever increases the amount of radiation
— more production or less damping — will cause the system to decay at a slower rate.
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Fig. 4.9. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the parameter ¢9 and the logarithm of the wavenumber k. We see that the
mirror quality of 7 and ¢; is reproduced here, with the graph of ¢9 the reverse of 7y.
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Fig. 4.10. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the diffusion constant Dy and the logarithm of the wavenumber k. The only
change in the MRE with the diffusion constant Dy, is at yy ~ 0, which again, as with 79,
is the length scale shockwaves can diffuse in 107 yr. Thus, as this diffusion constant is
increased, the inhibitory nature of the shocks wil propagate further in a given time, so
modes with longer length scales will decay at slower rates, as evidenced by the ridge on
the right getting wider as D}, increases.
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Fig. 4.11. Variation of the maximum real eigenvalue (MRE) of the stability matrix as
a function of the diffusion constant D,. and the logarithm of the wavenumber k. Here,
we have a pattern similar to Dy, except that the diffusion of radiation occurs at longer
length scales, and thus smaller wave numbers, since D,. ~ 1O5Dh, so radiation will diffuse
farther in a given time than shocks will.
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Fig. 4.12. Variation of the maximum real eigenvalue (MRE) of the stability matrix as
a function of the diffusion constant Dy and the logarithm of the wavenumber k. Here,
we have a pattern similar to Dy, except that the diffusion of radiation occurs at shorter
length scales, and thus larger wave numbers, since Dy ~ 10_3Dh, S0 massive stars will
not diffuse as far in a given time as shocks will.
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Fig. 4.13. Variation of the maximum real eigenvalue (MRE) of the stability matrix as
a function of the logarithm of the wavenumber k, for the choice 8; = 10, 89 = 2, 33 = 8,
and all other parameters the same as the other graphs.
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Fig. 4.14. Variation of the maximum real eigenvalue (MRE) of the stability matrix as a
function of the logarithm of the wavenumber k, for the choice 8; = 0.1, 3 = 0.02, 83 =
0.08, and all other parameters the same as the other graphs.
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Fig. 4.15. Variation of the maximum real eigenvalue (MRE) of the stability matrix as
a function of the logarithm of the wavenumber k, for the choice € = 0.2,¢9 = 0.18, €3 =
0.004,e4 = 0.02, and all other parameters the same as the other graphs.
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Fig. 4.16. The initial data for the warm gas component, plotted in arbitrary units for
illustrative purposes. The data is placed on an annulus; the piece at the center is an
artifact of the graphing software.
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Fig. 4.17. The warm gas component, after a period of 160 million years, using a heating
function inversely proportional to the radiation density, plotted in arbitrary units for
illustrative purposes.
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Fig. 4.18. The warm gas component, after a period of 320 million years, using a heating
function inversely proportional to the radiation density, plotted in arbitrary units for
illustrative purposes.
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Fig. 4.19. The warm gas component, after a period of 640 million years, using a heating
function inversely proportional to the radiation density, plotted in arbitrary units for
illustrative purposes. The pattern of spiral arms is beginning to fade.
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Fig. 4.20. The warm gas component, after a period of 960 million years, using a heating
function inversely proportional to the radiation density, plotted in arbitrary units for
illustrative purposes. The warm gas reaches spatial equilibrium.
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Fig. 4.21. The massive star component, after a period of 160 million years, using
a heating function inversely proportional to the radiation density, plotted in arbitrary
units for illustrative purposes. We start with initial data for the massive stars to be zero,
so the pattern here is from star formation induced by the starting form of the warm gas.
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Fig. 4.22. The massive star component, after a period of 320 million years, using
a heating function inversely proportional to the radiation density, plotted in arbitrary
units for illustrative purposes.
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Fig. 4.23. The massive star component, after a period of 640 million years, using
a heating function inversely proportional to the radiation density, plotted in arbitrary
units for illustrative purposes. The pattern begins to wash out.
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Fig. 4.24. The massive star component, after a period of 960 million years, using
a heating function inversely proportional to the radiation density, plotted in arbitrary
units for illustrative purposes. The massive star component reaches spatial equilibrium.



113

Warm gas component

Variation with angle at r=10" pc, t=2.5 x 10’ yr

—

0.050 4

3 . .
S —— Cooling rate r
g' 0.040 - — - — Heauviside heating and cooling |
S Differential rotation only
g
£ 0.030 r 2
@
=

0.010 : : : : :

0.0 2.0 4.0 6.0

Angle (rad)

Fig. 4.25. Angular variation of the warm gas component, for a model with a cooling
rate inversely proportional to radiation, a step function of radiation, and when the initial
data is simply differentially rotated, after 2.5 x 107 yr. Notice that the only effect of the
model has been to change the magnitude of the warm gas; the phase of each of the data
remains the same.
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Warm gas component

Variation with angle at r=10" pc, t=5 x 10’ yr

. 0.050 - .
c
Qo
c
o L 4
Q. /’\/\/
5
©0.040 | ——— Cooling rate r~ -
S — - — Heauviside heating and cooling
= Differential rotation only
c
=

0.020 : : : : :

0.0 2.0 4.0 6.0

Angle (rad)

Fig. 4.26. Angular variation of the warm gas component, for a model with a cooling
rate inversely proportional to radiation, a step function of radiation, and when the initial
data is simply differentially rotated, after 5 x 107 yr. The inverse radiation cooling rate
data has declined in magnitude, while that of the Heaviside function has increased.
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Warm gas component
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Fig. 4.27. Angular variation of the warm gas component, for a model with a cooling rate
inversely proportional to radiation, a step function of radiation, and when the initial data
is simply differentially rotated, after 7.5 X 107 yr. Again, the inverse radiation cooling
rate data has declined in magnitude, while that of the Heaviside function has increased.
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Because of the results presented here, by studying the variation of the MRE as the
various parameters are altered, it seems unlikely that the CFKS model, with a cooling
function inversely proportional to radiation density, would give spiral patterns that are
unstable, and hence would last for billions of years. Of course, the method we use could
conceivably have missed areas of the parameter space where the MRE is positive, and
we are basing our conclusion on the assumption that the pattern in the variations of
the MRE we saw apply everywhere. It may be different processes become important for
different sets of parameters, and so there might be an alteration in the behavior of the
model. However, the problem with arguments of this sort is that, to disprove it, one
would have to sweep all physical probable parameters and evaluate their eigenvalues,
although this is within the reach of a determined numerical survey.

This is part of the reason we devoted so much formalism to the heating, cooling
and damping functions. Because it seems that the original choice does not lead to spiral
structure, we can look at alternate forms of these functions that are physically motivated,
such as that by Parravano. Indeed, as we saw, a version of this gave us oscillatory
behavior in the one-zone model. It may be that, when using ag(g,r) ~ r_l, since there
is no “natural” radiation density, as there is in the Parravano model with its critical
density. Heating and cooling functions of this type allow inhibition and acceleration
of star formation to occur in the system, and may give rise to oscillatory cycles, and
therefore spiral patterns, in the disk. The parameters we used in the numerical results
presented here in Figures 4.25, 4.26 and 4.27 for the Heaviside function, which are the
same as those of the version with the cooling function inversely proportional to radiation,

would not give oscillations in the one-zone model (as we saw in Figures 3.9 and 3.10).
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Although, as we have stated before, the sudden changes that we saw in the oscillations
given in Figures 3.11, 3.12 and 3.13 are probably unphysical, there is the possibility
that, by using the same set of parameters that caused oscillations in the one-zone model
might increase the lifetime of a spiral pattern in the disk. This is certainly an interesting
avenue to explore in further work, although it might only occur with initial data that
has been “tuned” to give a spiral, whereas other sets of data might end up being washed

out.
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Chapter

Conclusions

This work has built upon the one-zone models presented here, and elsewhere in
the literature, to start to answer the question of how spiral structure in galaxies could
arise from the action of star formation. We have pursued the avenue of starting with a
particular model and adding diffusion terms to see if unstable modes result. Although
we found that there are no unstable modes within the range of parameters we consider
physical, this is not immediately a disappointing result. The model did strengthen the
arms that were twisted about by differential rotation to give a pattern that lasted 500
million years or so. One might speculate that, if there existed an outside influence, such
as a neighboring galaxy or a halo that was not axisymmetric, that there could possibly
be a way for the gravitational perturbation and the modes of the star formation could
interact to preserve the arms longer. Indeed, the model here did not consider the effects
of internal gravitational action — could the changes in velocity due to the matter pile-up
of the arms reinforce them over greater periods of time? We note here the finding of
those who worked in stochastic models that adding in an effective density wave reinforced
the nature tendency of star formation to create spiral arms [86].

Another line of future work would be to fiddle more with the model itself. Since
we have seen that some of the terms are more important than others, we could change the

possible functional dependences of the equations, to make it more tractable for analysis,
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without recourse to numerical solution of the equilibrium solutions. Of course, there are
other physical processes we have neglected that can be added in, such as the fact that
light stars return some of their mass back to the interstellar medium over time. We
also have not looked at the role that the metallicity of all the components would have.
It would be interesting if the steady state solution of the metallicity content is roughly
that of the solar neighborhood, although it would probably require a multi-zone model
(when neglecting spatial dependence) with a set of components both for the disk and the
halo. Thus, we would be looking at a variation of work done by Ferrini and collaborators
(see [30] and related papers).

We can also abandon the instantaneous recycling a ro imation, that is, not as-
sume that there is an immediate interaction between two players. For example, in a
term where shockwaves () interacts with GMCs ¢( ) to produce massive stars s( ), no
account has been taken of factors such as the finite time it takes for the cloud to collapse
to a point where local (spontaneous) star formation takes place. What we would instead

expect are terms on the order of

() () s )

for some formation time . This would give evolution equations of the form

s() ~ ) ( )
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and leads naturally into time delays, where an effect is postponed because of finite
propagation speeds. A system of equations, where there is a time delay, can lead to
oscillations, where there are might be only a movement to a steady state without delays.
The classic example is with two species, one preying on the other — the greater number
of predatory hunters, the larger the decrease in prey with time. As the number of prey
increases, this gives more food for the hunters, allowing them to have more offspring.
Because of the finite time between generations, the increase in predators occurs sometime
after that of the prey. When the predators hunt the prey to near extinction, there will be
a much smaller next generation of hunters (from a lack of food), which allows the prey
species to rebuild its numbers. Thus, there is oscillatory behavior in the populations of
the species, which has been observed in nature [62].

A related idea is to consider the decrease in radiation intensity as one moves away
from the source. Recall that, in our numerical simulations, because of the large value of
the diffusion constant for radiation, along with the cooling term inversely proportional to
radiation, it was easier to assume a mean field approximation, where the radiation density
is the same everywhere. This is equivalent to an infinite propagation speed, with the
radiation produced spread evenly over the disk. Of course, in a more realistic situation,
the radiation produced at one point would spread out to a limited distance over a finite
time, with the flux also decreasing as the wave front progressed. However, although
this would be more physical, it would also act to slow down the numerical computation,
since, at each point in the disk, the program would have to find the radiation at has
reached that spot, weighted by the the inverse of the distance between the points of

production and reception. Yet it is also possible that this is an important effect that has



121
been neglected — since UV radiation acts as an inhibitor of star formation, this would
dampen nearby generations of stars from forming, but not those faraway.

In this study, we have used constant parameters, but for some of the physical
effects, there is a dependence on radius due to, for example, the change in metallicity
as one approaches the edge of the disk. The epicyclic frequency of molecular clouds
oscillating in their orbits around the center of the galaxy is also radius-dependent, and
thus, the cloud-cloud collision rate is as well. We mentioned in the Introduction how
varying parameters can produce travelling waves, and this might be just the effect to
combat the winding dilemma. One can imagine that the equations conspire to produce
waves whose radial speed as they move around the disk varies with radius. If this can be
managed so that the wave is moving faster at larger radii, then the spiral pattern could
be maintained for much longer periods of time.

Finally, there might also be issues with the numerical simulations themselves, such
as the boundary conditions used. Here, we chose no-flux boundary conditions, which is
probably appropriate for the inner radius but not the outer one. Instead of an annulus,
we could study a disk, with the galactic bulge rotating with a constant angular speed,
attached to the disk which moves with a constant linear speed, matching the two regions
at their boundary. In this scenario, we could then not only study the question of spiral
structure formation, but also the evolution of the composition of the bulge in relation to
the disk. Other directions would be to consider a wider range of initial data, and compare
how the size of the annulus would change the results. With numerical solutions, there is
always the possiblity of numerical errors creeping in from as yet unknown sources, which

one should be on the lookout for, by making sure that the results are consistent. An
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example of further testing would be how the simulations change with the number of grid

points.



123

ppendi

Anal sis of reaction di usion models on t e galactic disk

1 rief re ie of non linear e uations

The mathematical analysis of non-linear equations is well documented, and can be
used in models of mathematical biology [62], chemical systems [85] as well as Hamiltonian
systems [79]. Here, we review the main ideas of this analysis. Suppose we have a system
with n components — these could be concentrations of a chemical or populations in an
ecosystem. We represent these components by the entries in a vector , whose evolution

in time is given by the matrix-valued equation

d
= () (A1)

When the function is non-linear, we examine its behavior by (1) determining its steady
state values, and (2) examining the stability of these values. To do the first step, we

solve the equation

(0)=0 (A.2)

for the equilibrium vector (. When the state is at ), all the time derivatives are zero,
so the state will remain there. However, a tiny change in this state can either drive the
system away from equilibrium, or else decay back towards a steady state. To determine

whether these values are stable, we look at perturbations y = 0; by using a Taylor
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expansion, we have that

1 (o) v— o (A.3)

Since the state () is the equilibrium state, the first term in the expansion is zero; the
evolution of the system is given to linear order by the matrix  / 0> known as the
sta ility matri . The eigenvalues of this matrix will determine whether or not the steady

state is stable. If we consider perturbations of the form

y=A4

then the linear equation above is

—= Y=y — (A4)

So, by solving the characteristic equation of the stabiility matrix, one can find the values
of ;if > 0, the perturbation will grow with time, and the system is unstable, while,
if <0, then the steady state is stable.

When we look at system with spatial extent, using reaction-diffusion equations
and their derivative terms, we can follow the same procedure, save that we now ex-
pand our perturbations both in exponential functions of time and eigenfunctions of the
Laplacian that are appropriate for the geometry and boundary conditions we are study-

ing. Thus, we consider eigenfunctions of the Laplacian on an annulus A, with no-flux
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boundary conditions, that is,

2 k) K (k)=0 — (W=0on A (A.5)

and, in our linearized equations, we look for solutions of the form

(k) = (k) (A.6)

If we do this, then we again find the characteristic equation of the stability matrix, which
will now depend on the wavenumber k. Because of this, there may be some modes which
are stable and others which are unstable. By choosing a good system of equations, one
may create patterns by modes which are unstable to perturbation, and hence will grow,
while all other decay to equilibrium. In the next two sections, we consider two cases
which are appropriate for pattern formation on galactic disks, where the galaxy is either

rotating at a constant linear velocity, or a constant angular velocity.

1 id rotation

First, we consider the case where the angular velocity is constant throughout the
disk. Not only is this an easier case to deal with, but it also possibly applicable to
dwarf galaxies, although it is not clear if the entire disk of the galaxy is being measured.
We look for eigenfunctions of the Laplacian on a two-dimensional circle , with no-flux

boundary conditions. By solving



126

we find these functions to be expandable in Bessel functions,

(k) = (kr) (A.8)

where k is determined by the fact that at the boundary of the disk, ' (kr) = 0 (a list of
the zeroes of the Bessel functions and their derivatives is given in Beattie [7]). We look

for solutions of the form

(ry , )= ¢ (A.9)

By placing this into our linearized equations, we find that this gives us the characteristic
equation

A Dk =0 (A.10)

Notice that, as we would expect, this is the same equation as if there were no rotation.

1 erential rotation

When we have rotation at a constant angular velocity, we introduce a term in-
versely proportional to the radius into the evolution equation. Thus, by analogy to what
we did earlier, we try to find eigenfunctions of the Laplacian, plus the differential rotation

term,

(k) =0 (A.11)
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where d is the diffusion constant. Writing out the Laplacian and dividing by the constant

d, we assume a solution of the form = (r) ( ), so that, using the usual solution

()=exp(m ), we get

n 1 2 M m? —0
r dr r2 N
Using the variable =2 kr, we have
pola 1 dmel o mdo
4 dk 2

This gives us that ( ) can be solved by a confluent hypergeometric function,

()= e» 5 (e L)

where
=2m =m cd= -1 2 8;7:
Our complete solution is
Ay (k,e(D))
(‘l“, ) ): A2 (kac(D ))

Az (k,¢(Dy))

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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We note that confluent hypergeometric functions! such as these have appeared in the con-
text of models of star formation, in works by Shore [88] and Neukirch and Feitzinger [65],
and we show an example of such a mode from an illustration in Neukirch and Feitzinger
in Figure A.3. In both papers, the authors were solving equations with two components
reduced to one by the assumption of a closed system; here, we examined the case for
an arbitrary number of components on a differentially rotating annulus. Furthermore,
Neukirch and Feitzinger were able to show that if a two armed mode (i.e m = 2) were
excited, there would also be at least one unstable m = 1 mode and one m = 0 mode.
However, when there is more than one component, the unstable modes are determined

by the stability matrix and its eigenvalues, which will not, in general, have this property.

1To relate this to the rigid rotation case, e comment that these f nctions can be expanded
to an infinite series of essel f nctions.
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Fig. A.1. Density contours of the real part of the m = 2 normal mode (A.14) with vy/d
= 12.5. From Neukirch and Feitzinger [65].



130

eferences

[1] Abbott, D. C. 1982, he stro hysical ournal, 263, 723

[2] Adams, F. C., Lizano, S., and Shu, F. H. 1987, nnual eview of stronomy and

stro hysics, 25, 23

[3] Arnett, W. D., and Muller, M. W. 1976, he stro hysical ournal, 210, 670

[4] Bak, P., Tang, C., and Weisenfeld, K. 1987, hysics eview etters, 58, 381

[5] Bak, P., Tang, C., and Weisenfeld, K. 1987, hysical eview , 38, 364

[6] Bakes, E. L. O. and Tielens, A. G. G. M. 1994, he stro hysical ournal, 427, 822

[7] Beattie, C. L. 1958 ell ystem echnical ournal, 37, 689

[8] Ben-Jacob, E., and Garik, P. 1990, ature, 323, 523

[9] Ben-Jacob, E. 1993, ontem orary hysics, 33, 247

[10] Ben-Jacob, E. 1997, ontem orary hysics, 38, 205

[11] Binney, J. and Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Uni-

versity Press)

[12] Bohlin, R., Savage, B., and Drake, J. 1978, he stro hysical ournal, 224, 132

[13] Brinks, E., and Bajaja, E. 1986, stronomy and stro hysics, 169, 14

[14] Burkert, A., and Hensler, G. 1990, stro hysics and ace cience, 171, 149



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

131

Cartin, D., personal communication

Cartin, D., and Khanna, G. 1999, preprint (astro-ph 9909189)

Chevalier, R. A. 1977, nnual eview of stronomy and stro hysics, 15, 175

Cox, D. P., and Franco, J. 1983, he stro hysical ournal, 273, 243

Dame, T. M., and Thaddeus P. 1985, he stro hysical ournal, 297, 751

Draine, B. T., and McKee, C. F. 1993, nnual eview of stronomy and stro

hysics, 31, 373

Dopita, A. 1985, he stro hysical ournal, 295, L5

Elmegreen, D. M., and Elmegreen, B. G. 1982, onthly otices of the oyal stro

nomical ociety, 201, 1021

Elmegreen, D. M., and Elmegreen, B. G. 1984, he stro hysical ournal(supl.),

79, 37

Elmegreen, D. M., and Elmegreen, B. G. 1987, he stro hysical ournal(supl.),

54, 127

Elmegreen, D. M., and Elmegreen, B. G. 1987, he stro hysical ournal, 320, 183

Elmegreen, B. G. 1990 in Evolution of the Interstellar Medium, ed. L. Blitz (San

Francisco: Astronomical Society of the Pacific)

Elmegreen, B. G. 1992 in Star Formation in Stellar Systems (III Canary Islands
Winter School of Astrophysics), ed. G. Tenorio-Tagle, M. Prieto, and F. Sanchez

(Cambridge: Cambridge University Press)



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

132

Elmegreen, B. G., and Thomasson, M. 1992, stronomy and stro hysics, 272, 37

Ferrini, F., and Galli, D. 1988, stronomy and stro hysics, 195, 27

Ferrini, F., Matteucci, F., Pardi, C. and Penco, U. 1992, he stro hysical ournal,

387, 138

Franco, J., and Shore, S. N. 1984, he stro hysical ournal, 285, 813

Franco, J., Shore, S. N., and Tenorio-Tagle, G. 1994, he stro hysical ournal,

436, 795

Frei, ., Guhathakurta, P., Gunn, J. E., and Tyson, J. A. 1996, The Astronomical

Journal, 111, 174

Freund, A. 1997, preprint (astro-ph 9705143)

Galli, D., and Ferrini, F. 1989, stronomy and stro hysics, 218, 31

Gerola, H., and Seiden, P. E. 1978 he stro hysical ournal, 223, 129

Gerola, H., Schulman, L. S., and Seiden, P. E. 1979, he stro hysical ournal,

232, 702

Grindrod, P. 1991, Patterns and Waves: The Theory and Applications of Reaction-

Diffusion Equations (Oxford: Clarendon Press)

Habe, A., Ikeuchi, S., and Tanaka, Y. D. 1981, wu lications of the stronomical

ociety of a an, 33, 23

Ikeuchi, S., Habe, A., and Tanaka, Y. D. 1984, onthly otices of the oyal stro

nomical ociety, 207, 909



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

133

Hubble, E. P. 1936, The Realm of the Nebulae (New Haven, Conn: Yale University

Press)

Tkeuchi, S., and Li, F. 1990, wu lications of the stronomical ociety of a an, 42,

387

Kauffman, S. 1993, The Origin of Order (Oxford: Oxford University Press)

Kennicutt, R. C. 1998, he stro hysical ournal, 498, 541

Klein, R. I., McKee, C. F., and Woods, D. T. 1995 in The Physics of the Interstellar
Medium and Intergalactic Medium, ed. A. Ferrara, C. F. McKee, C. Heiles, and P.

R. Shapiro (San Francisco: Astronomical Society of the Pacific)

Koppen, J., Theis, Ch., and Hensler, G. 1995, stronomy and stro hysics, 296, 99

Lada, C. J., and Shu, F. H. 1990, cience, 248, 564

Lada. E., Strom, K., and Myers, P. 1991 in Protostars and planets III, ed. E. Levy,

J. Lunine, and M. Matthews (Tucson: University of Arizona Press)

Langer, J. S. 1989, cience, 243, 1150

Larson, R. B. 1992 in Star Formation in Stellar Systems (III Canary Islands Winter
School of Astrophysics), ed. G. Tenorio-Tagle, M. Prieto, and F. Sanchez (Cam-

bridge: Cambridge University Press)

Larson, R. B. 1999 in Star Formation 1999, ed. T. Nakamoto

Lin, C. C., and Shu, F. 1964, he stro hysical ournal, 236, 646



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

134
Lin, C. C., and Shu, F. 1966, roceedings of the ational cademy of ciences, 55,

229

Lozinskaya, T. A. 1992, Supernovae and Stellar Wind in the Interstellar Medium

(New York: American Institute of Physics)

MacDonald, N. 1989, Biological delay systems: linear stability theory (Cambridge:

Cambridge University Press)

Mantilla Ch., J. and Parravano, A. 1991, he stro hysical ournal, 250, 70

Mathis, J. S., Mezger, P. G. and Panagia, N. 1983, stronomy and stro hysics,

128, 212

McKee, C. F. 1989, he stro hysical ournal, 345, 782

McKee, C. F. 1990, in Evolution of the Interstellar Medium, ed. L. Blitz (San

Francisco: Astronomical Society of the Pacific)

McKee, C. F. and Ostriker, J. P. 1977, he stro hysical ournal, 218, 148

Meinhardt, H. 1982, Models of Biological Pattern Formation (New York: Academic

Press)

Murray, J. D. 1993, Mathematical Biology (Berlin: Springer-Verlag)

Nozakura, T., and Ikeuchi, S. 1984, he stro hysical ournal, 279, 40

Nozakura, T., and Tkeuchi, S 1988, he stro hysical ournal, 333, 68

Neukirch, T., and Feitzinger, J. V. 1988, onthly otices of the oyal stronomical

ociety, 235, 1343



135

[66] Osterbrock, D. E. 1974, Astrophysics of Gaseous Nebulae (San Francisco: Freeman)

[67] Parravano, A. 1987, stronomy and stro hysics, 172, 280

[68] Parravano, A. 1988, stronomy and stro hysics, 205, 71

[69] Parravano, A. 1989, he stro hysical ournal, 347, 812

[70] Parravano, A. 1996, he stro hysical ournal, 462, 594

[71] Parravano, A., Rosenzweig, P., and Teran, M. 1990, he stro hysical ournal, 350,

100

[72] Raymond, J. C., Cox, D. P., and Smith, B. W. 1976, he stro hysical ournal,

204, 290

[73] Rubin, V. C., Ford, Jr., W. K., and Thonnard, N. 1978, he stro hysical ournal,

225, 1107

[74] Rubin, V. C., Ford, Jr., W. K., and Thonnard, N. 1980, he stro hysical ournal,

238, 471

[75] Salpeter, E. E. 1955, he stro hysical ournal, 121, 161

[76] Sandage, A. 1986, stronomy and stro hysics, 161, 89

[77] Savage, B. D., and Mathis, J. S. 1979, nnual eview of stronomy and stro

hysics, 17, 73

[78] Scalo, J. M. 1986, wundamentals of osmic hysics, 11, 1



[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

136
Scheck, F. 1990, Mechanics: From Newton s Laws to Deterministic Chaos (Berlin:

Springer-Verlag)

Schmidt, M. 1959, he stro hysical ournal, 129, 243

Schmidt, M. 1963, he stro hysical ournal, 137, 758

Schulman, L. S. 1993, in Cellular Automata: Prospects in Astrophysical Applica-

tions, ed. A. Lejeune and J. Perdang (Singapore: World Scientific), 294

Schulman, L. S., and Seiden, P. E. 1986, cience, 233, 425

Schulman, L. S., and Seiden, P. E. 1990, dwvances in  hysics, 39, 1

Scott, S. K., Chemical Chaos, International series of monographs on chemistry, vol.

24 (Oxford: Oxford University Press)

Seiden, P. E., and Gerola, H. 1982, wundamentals of osmic hysics, 7, 241

Shore, S. N. 1981, he stro hysical ournal, 249, 93

Shore, S. N. 1983, he stro hysical ournal, 265, 202

Shore, S. N., and Ferrini, F. 1995, wundamentals of osmic hysics, 16, 1

Silk, J., and Wyse, R. F. G. 1985, he stro hysical ournal, 296, L1

Smolin, L. 1996, preprint (astro-ph 9612033)

Spitzer, L. Jr. 1978, Physical Processes in the Interstellar Medium, (New York:

Wiley)

Struck-Marcell, C., and Scalo, J. M. 1987 he stro hysical ournal(supl.), 64, 39



[94]

[95]

[96]

[97]

[98]

[99]

[100]

137
Tenorio-Tagle, G. 1982 in Regions of Recent Star Formation, ed. R. Roger and P.

Dewdney (Dordrecht: Reidel)

Theis, Ch., Burkert, A., and Hensler, G. 1992, stronomy and stro hysics, 265,

465

Turing, A. 1952, hiloso hical ransactions of the oyal ociety of ondon, 237B,

37

Toomre, A., and Toomre, J. 1972, he stro hysical ournal, 178, 623

Verhulst, P. F. 1838, orres ondance athemati ue et hysi ue 10, 113

Yorke, H. W., Tenorio-Tagle, G., Bodenheimer, P., and Rozyczka, M. 1989, stron

omy and stro hysics, 216, 207

aikin, A., and habotinsky, A. 1970, ature, 225, 535



1ta

Daniel Cartin was born under a 100-ft high star on Christmas Day, 1971 in
Roanoke, VA. He spent almost all of his youth in the state of North Carolina, whose
primary exports are pork, tobacco, and winning college basketball teams. After attend-
ing a high school whose architecture was modeled after a prison building, he went on to
a bewildering array of universities — experiencing the joy of walking through tunnels at
night with his future wife while earning his bachelor s degree, finally learning to snap
his fingers while getting a master s, and having to cope with the neighbor s drum set
while writing this dissertation. The author plans to move to New Jersey and to teach

the resident Yankees about the fine art of the Southern drawl.



