I. LIST OF SYMBOLS

\(a, b, \ldots\) spatial indices for tensor fields on the 3-manifold \(M\)
\(\alpha, \beta, \ldots\) space-time indices in the classical theory
\(\alpha, \beta, \ldots\) labels for graphs on \(M\) in quantum theory
\(A^i_a\) a connection 1-form on \(M\)
\(A(e)\) holonomy along an edge \(e\) defined by a connection \(A\)
\(\tilde{A}\) space of smooth connections on \(M\) for a given gauge group \(G\)
\(\hat{A}\) a generalized connection
\(\hat{A}(e)\) holonomy along an edge \(e\) defined by a generalized connection \(\tilde{A}\)
\(\tilde{A}(e)\) —corresponding quantum operator
\(\hat{A}\) quantum configuration space (of generalized connections)
\(A_S\) area of a 2-surface (without boundary) \(S\)
\(\tilde{A}_a\) —corresponding quantum operator
\(A_a\) Maxwell vector potential
\(\tilde{A}(e)\) —corresponding holonomy along an edge \(e\)
\(B^a\) Maxwell magnetic (vector density) field
\(C\) the set of complex numbers
\(C_{\text{Diff}}(\vec{N})\) diffeomorphism constraint smeared with \(N^a\)
\(\tilde{C}_{\text{Diff}}(\vec{N})\) —corresponding quantum operator
\(\tilde{C}(N)\) scalar constraint smeared with \(N\)
\(\hat{C}(N)\) —corresponding quantum operator
\(C_{G}(\Lambda)\) Gauss constraint smeared with \(\Lambda^i\)
\(\hat{C}_{G}(\Lambda)\) —corresponding quantum operator
\(C^{(\alpha)}\) a differentiability class
\(\text{Cyl}\) algebra of cylindrical functions on \(\mathcal{A}\)
\(\text{Cyl}_\alpha\) algebra of the cylindrical functions defined by a graph \(\alpha\)
\(\text{Cyl}^*\) space of linear functionals on \(\text{Cyl}\)
\(\text{Cyl}_{\text{diff}}^*\) the image of \(\text{Cyl}\) under the diffeomorphism averaging map
\(\text{Diff}\) group of certain diffeomorphisms of \(M\) (defined in Section ??)
\(e\) a closed-piecewise analytic edge (defined in section ??)
\(E^a_{ij}\) triads with density weight one, defining the Riemannian geometry on \(M\)
\(e_{jk}^i\) structure constants of \(\text{su}(2)\) (of a general \(\mathfrak{g}\) in section ??)
\(\eta_{ij}\) the Killing form on \(\text{su}(2)\) (on a general \(\mathfrak{g}\) in section ??)
\(\eta_{abc}\) metric independent, totally skew pseudo tensor density of weight 1 on \(M\)
\(\eta_{abc}\) metric independent, totally skew pseudo tensor density of weight -1 on \(M\)
\(\eta_{\text{diff}}\) diffeomorphism averaging map (defined in section ??)
\(F^i_{ab}\) curvature of \(A^i_a\)
\(G\) a compact Lie group
\(\mathfrak{g}\) —its Lie algebra
\(G\) Newton’s constant
\(\gamma\) Barbero-Immirzi parameter
\(\mathcal{H} \) kinematical Hilbert space of quantum geometry
\(\mathcal{H}_\alpha \) subspace of \(\mathcal{H} \) defined by cylindrical functions compatible with graph \(\alpha \)
\(\mathcal{H}'_\alpha \) subspace of \(\mathcal{H}_\alpha \) used in the spin-network decomposition of \(\mathcal{H} \)
\(i, j, \ldots \) 4-dimensional internal indices in section ??
\(I, J, \ldots \) labels (e.g. for edges, punctures, etc) in sections ??-??
\(\mathcal{I}_E \) map from the space of connections on a graph with \(n \) edges into \(G^n \)
\(\mathcal{I}_V \) map from the space of gauge transformations on a graph with \(m \) vertices into \(G^m \)
\(j_{i(e,v)} \) operator on \(\text{Cyl}_\alpha \) associated to an edge \(e \) and a vertex \(v \) of \(\alpha \)
\(k \) \(8\pi \) times Newton’s constant
\(\kappa \) surface gravity of isolated horizons
\(\kappa(S,e) \) a constant \((0, \pm -1) \) assigned to a surface \(S \) an edge \(e \) intersecting it
\(\ell_{\text{Pl}} \) Planck length
\(L^2 \) space of square integrable functions
\(M \) 3-dimensional (‘spatial’) manifold (generally assumed to be compact)
\(\mathcal{M} \) 4-dimensional space-time manifold
\(\mathbb{N} \) the set of natural numbers
\(P^i_a \) momentum canonically conjugate to \(A^i_v \)
\(P(S,f) \) flux across a two surface \(S \) of \(P^i_a \) smeared with a test field \(f^i \)
\(\hat{P}(S,f) \) quantum operator corresponding to \(P(S,f) \)
\(\mathbb{P}^a \) Momentum conjugate to the Maxwell connection \(A^i_v \)
\(\mathbb{P}(g) \) Maxwell momentum smeared against a test field \(g^a \)
\(\hat{\mathbb{P}}(g) \) — correspondig definite quantum operator
\(q_{ab} \) positive definite metric on \(M \)
\(q_{e,v} \) the quantum operator representing determinant of \(q_{ab}(v) \), restricted to \(\text{Cyl}_\alpha \)
\(\mathbb{R} \) the set of real numbers
\(S \) A closed-piecewise analytic sub-manifold of \(M \) (defined in section ??)
\(\Sigma_{ab}^i \) Hodge-dual of the gravitational momentum \(P^a_i \) \((\Sigma_{ab}^i = \eta_{abo}\eta^{ij}E_j^i) \)
\(\text{Tr} \) trace
\(V_\mathcal{R} \) the volume of a region \(\mathcal{R} \) defined by \(q_{ab} \)
\(\hat{V}_\mathcal{R} \) — correspondig quantum volume