# Astrophysical Sources of 10 GeV Neutrinos

## Soebur Razzaque

U.S. Naval Research Laboratory, Washington, D.C. National Research Council

### Matter Oscillation Affects 10 GeV Event Rate



### **Background: Atmospheric Neutrino Flux**



## **Detection Probability: Signal/Background**



### For ≥1 integrated event rate in ~10-100 GeV requires

### Fluence $\geq 4 \times 10^{-4} \text{ erg cm}^{-2} !!!$

From an astrophysical source in ≤10<sup>4</sup> s for N<sub>signal</sub>/N<sub>background</sub> ≥1

## **Optically Thin Sources:** *p* $\gamma$ **Processes**



#### Gamma Ray Bursts

- Typical GRB fluence in MeV photons ~10<sup>-5</sup> erg cm<sup>-2</sup>, typical z~1-2 Maybe OK
- → typical z~1-2, huge *isotropic* energy release in ~10<sup>52</sup> 10<sup>54</sup> erg
- However,  $\Gamma$ >100! MeV  $\rightarrow$  ~keV
- Opacity  $\tau_{p\gamma}$  can be ~1 with in-situ keV photons, but <<1 at MeV Too low!

## **Optically Thin Sources:** *pp* **processes**

### **Acceleration of proton** $\rightarrow$ **Beam dump** $pp \rightarrow \pi$ , $K \rightarrow$ neutrinos

Similar to the atmospheric neutrinos from cosmic-ray interactions



S. Razzaque 3/20/09

### **Galactic Supernova Remnants**

#### HESS source RXJ 1713.7-3946



Energy (TeV)

Gamma-ray flux 1-10 TeV

$$\Phi_{\gamma} = 6.77 \times 10^{-8} \left(\frac{E_{\gamma}}{\text{GeV}}\right)^{-2.2} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$$

### Probable origin:

Cosmic-ray from SN  $\rightarrow pp$  interaction with nearby molecular cloud  $\pi^0 \rightarrow \gamma\gamma$ 

## Neutrino Event Rate: Supernova Remnants

### HESS source RXJ 1713.7-3946

• Calculate neutrino fluxes from observed TeV  $\gamma$ -ray flux assuming pp interaction

Alvarez-Munhiz & Halzen 2002 Costantini & Vissani 2005

• Take into account vacuum oscillation to calculate neutrino fluxes on Earth

 $\Phi_{\rm SNR}(v_{\mu}) = 1.55 \times 10^{-8} \left(\frac{E_{\nu}}{\rm GeV}\right)^{-2.2} \rm GeV^{-1} \rm cm^{-2} \rm s^{-1}$ 

#### Too low for detection at 10-100 GeV

May be detectable (~50 yr<sup>-1</sup>) at  $\geq$ TeV energy with a faster declining atmospheric background and improved angular resolution v to  $\gamma$ -ray flux ratios in *pp* interaction with *p* spectrum  $dN/dE \sim E^{-\text{spectr. index}}$ 

| spectr. index | $ u_{\mu}/\gamma$ | $\overline{ u}_{\mu}/\gamma$ | $ u_e/\gamma$ | $\overline{ u}_e/\gamma$ |
|---------------|-------------------|------------------------------|---------------|--------------------------|
| 2.0           | 0.50              | 0.50                         | 0.30          | 0.22                     |
| 2.1           | 0.46              | 0.46                         | 0.29          | 0.19                     |
| 2.2           | 0.43              | 0.43                         | 0.28          | 0.18                     |
| 2.3           | 0.40              | 0.41                         | 0.26          | 0.16                     |
| 2.4           | 0.37              | 0.38                         | 0.25          | 0.15                     |

Costantini & Vissani 2005 using Thom Gaisser's book or Paolo Lipari's 1993 article



S. Razzaque 3/20/09

## **Galactic Soft Gamma Repeaters**

 Highly magnetized neutron stars **INTEGRAL SPI/ACS Lightcurve** at surface  $B \ge 10^{15}$  G Initial Pea 2 x106 1x10<sup>6</sup> Total energy stored in magnetic field ~Volume\* $B^2/(8\pi) \ge 10^{48}$  erg Count Rate [1/s] Pulsating Tail ~200 keV γ-ray fluence Giant flares from SGR  $1 \text{ erg cm}^{-2}$ ! • Transfer magnetic energy to  $\gamma$ -rays by "star quakes" Precursor 1x10<sup>5</sup> 60 120 • Thermal γ-rays or Non-thermal? -60 60 -120 -180 0 120 180 240 Time [s] after 21:30:26.539 UTC Particle acceleration by shocks Non detection by IceCube

Proton acceleration  $\rightarrow$  neutrinos TeV flux predicted by

Ioka, Razzaque, Kobayashi & Meszaros 2005 Halzen, Landsman & Montaruli 2005

#### SGR 1806-20 Outburst on December 27, 2004



S. Razzague 3/20/09

### **Neutron Loaded GRB Jet**



~10-50 GeV neutrinos from long and short GRBs *if* neutron-proton decouple Derishev, Kocharovsky & Kocharovsky 1999; Meszaros & Bahcall 2000; Razzaque & Meszaros 2006

### Neutrino fluence f

$$\tau_{pn} \frac{L_p t}{4\pi d_L^2} \frac{E_v}{m_p c^2 \Gamma} = \begin{cases} 7 \times 10^{-6} \frac{\tau_{pn} L_{p,52} t_2}{d_{z=1}^2 \Gamma_{2.5}} \text{ erg cm}^{-2} & 10 \text{ GeV, long GRB } \checkmark \text{ if } z < 0.2 \\ \text{e.g. GRB 030329} \\ 4 \times 10^{-8} \frac{\tau_{pn} L_{p,49} t_0}{d_{z=0.1}^2 \Gamma_{2.8}} \text{ erg cm}^{-2} & 50 \text{ GeV, short GRB} \end{cases}$$

S. Razzaque 3/20/09

### Jetted Core Collapse SNe: Hypernovae

Core-collapse SNe (type Ib/c, type II) with semi-relativistic jet → Common origin of Supernovae - Gamma Ray Bursts

Razzaque, Meszaros & Waxman 2004



High expansion velocity (30-40 x 1000 km/s) as in SN 1998bw

Radio afterglow not associated with gamma-ray emission

Asymmetric explosion: polarimetry observations of SN type Ib/c

#### **10 GeV neutrino fluence**

$$\frac{\tau_{pp} E_{\text{jet,iso}}}{4\pi d_L^2 \ln(E_{p,\text{max}} / E_{p,\text{min}})} \frac{E_v}{E_p} = 7 \times 10^{-4} \frac{\tau_{pp} E_{\text{jet,52}}}{d_{20\text{Mpc}}^2} \text{erg cm}^{-2}$$

 $\sim$ 4000 galaxies known within 20 Mpc with a combined rate of >1 SN/yr

- While many astrophysical sources may produce ~10 GeV neutrinos, detection of the sources is difficult
- Optically thin sources, persistent γ-ray sources are less likely to produce large ~10 GeV neutrino flux
- Optically thick and transient sources related to SN-GRB are more likely to produce detectable ~10 GeV neutrinos