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The Universe of GR in 1956

Einstein’s obituary

"In the forty years that have
elapsed [since the classic
initial tests] these have
remained the principal, and,
with one exception the only
connection between the
general theory and
experience.’

Einstein and Oppenheimer
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The Universe
of Quantum
General
Relativity is
much Larger

The origin of
subsystems for which
GR is unimportant
today lies in the early
quantum universe
where gravity was
central.
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The Quasiclassical Realm
- A feature of our Universe

The wide range of time, place and scale on
which the laws of classical physics hold to an
excellent approximation.

® Time --- from the Planck era forward.
® Place --- everywhere in the visible universe.
® Scale --- macroscopic to cosmological.

What is the origin of this quasiclassical realm in a
quantum universe characterized fundamentally

by indeterminacy and distibuted probabilities’




Classical spacetime is the
key to the origin of the
rest of the quasiclassical

realm.




Origin of the Quasiclassical Realm

® Classical spacetime emerges from the quantum
gravitational fog at the beginning.

Local Lorentz symmetries imply conservation laws.

Sets of histories defined by averages of densities of
conserved quantities over suitably small volumes
decohere.

Approximate conservation implies these
quasiclassical variables are predictable despite the
noise from mechanisms of decoherence.

Local equilibrium implies closed sets of equations of
motion governing classical correlations in time.




Only Certain States Lead to
Classical Predictions

® Classical orbits are not predictions of
every state in the quantum mechanics of a
particle.

® Classical spacetime is not a prediction of
every state in quantum gravity.




Classical spacetime is
the key to the origin of
the quasiclassical
realm.

The quantum state of
the universe is the key
to the origin of
classical spacetime.




Loop Quantum Cosmology

Loop quantum gravity provides a
fundamental framework for
formulating a theory of the state
and deriving its predictions for
cosmology.

But at the moment we all
seem forced to models.




The Classical Spacetimes
of Our Universe

We seek a state that will not just predict some classical
spacetime but which predicts classical spacetimes with a

high probability for properties ronsistent with our
cosmological observations. /?N

*homogeneity and isotro
*the amount of matter
ethe amount of inflation




This Talk:

We analyze the classical spacetimes
predicted by Hawking’s no-boundary
quantum state for a class of
minisuperspace models.

m:L5g5¢exp(—l[g,¢])




Minisuperspace Models

Geometry: Homogeneous, isotropic, closed.

= (3/A) [N2(\)dA2 + a*(X)dQ2]

Matter: cosmological constant A plus homogeneous
scalar field moving in a quadratic potential.

1
V((I)) — §m2<132

Theory: Low-energy effective gravity.

m2

Ic|g] = ~T6n d4 (9)Y%(R — 2A) + (surface terms)




Classical Pred.in NRQM ---Key Points

Semiclassical form:

U (qo) = A(qp)et(a0)/P

® When S(qo) varies rapidly and A(qo) varies
slowly, high probabilities are predicted for
classical correlations in time of suitably coarse
grained histories.

® For each qo there is a classical history with
probability:
po = VS(qo) p(class.hist.) = |A(qo)|”




NROM --Two kinds of histories
U (qy) = A(qO)eiS(qo)/h

® 5(qo) might arise from a semiclassical

approximation to a path integral for Y(qo) but
it doesn’t have to.

e If it does arise in this way, the histories for
which probabilities are predicted are generally
distinct from the histories in the path integral
supplying the semiclassical approximation.




No-Boundary Wave Function (NBVVF)

ds® = (3/A) [N*(\)dN* + a*(\)d3]

(b, x) = /C SNSasé exp(—~IIN(A),a(N), 6(N)]/h)

The integral is over all (a(A), ¢(X\))which are
regular on a disk and match the (b, x) on its
boundary. The complex contour is chosen so that
the integral converges and the result is real.




Semiclassical Approx. for the NBVVF

(b, ) = /C §NGasd exp(—IIN(N), a(A), 6(\)]/h)

® |n certain regions of superspace the steepest
descents approximation may be ok.

® To leading order in h the NBWF will then have the
semiclassical form:

W(b, x) ~ exp{[—Ir(b, x) +1S(b, )]/}

® The next order will contribute a prefactor which we
neglect. Our probabilities are therefore only relative.




Instantons and Fuzzy Instantons

In simple cases the extremal geometries may be real
and involve Euclidean instantons, but in general they
will be a complex --- fuzzy instantons.




Classical Pred

iction in MSS and

The Classicality Constraint
\Ij(bv X) ~ exp{[—]R(b, X) - ZS(bv X)/h}

*Following the NRQM analogy this semiclassical form
will predict classical Lorentian histories that are the
integral curves of S, ie the solutions to:

pa=VaS

p(class. hist.) x exp(—2Ir/h)

*However, we can expect this only when S is rapidly
varying and Ir is slowly varying, i.e.

Valgr| < [VaS|

(VIR)"| <[ (VS)7.

These consitute t

ne classicality condition.




Class. Prediction --- Key Points

*The NBWF predicts probabilities for an ensemble
of entire, 4d, classical histories.

*These real, Lorentzian, histories are not the same as
the complex extrema that supply the semiclassical
approximation to the integral defining the NBVVF.




No-Boundary Measure on

Classical Phase Space

The NBWEF predicts an ensemble of classical histories
that can be labeled by points in classical phase space.
The NBWEF gives a measure on classical phase space.
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The NBWVF predicts a one-parameter subset of the two-
parameter family of classical histories, and the classicality
constraint gives that subset a boundary.




Singularity Resolution

® The NBVVF predicts probabilities for entire
classical histories not their initial data.

The NBWEF therefore predicts probabilities
for late time observables like CMB
fluctuations whether or not the origin of the
classical history is singular.

The existence of singularities in the
extrapolation of some classical approximation
in quantum mechanics is not an obstacle to
prediction but merely a limitation on the
validity of the approximation as loop
quantum cosmology has shown.




Equations and BC

h=c=G=1, p=3/MN)"?*m, ¢ = (4r/3)Y/2®, H> = A/3

You won'’t follow this.
exer | just wanted to show how
Equ: much work we did.

i+ 2a0° + a(l + p*¢*) =0

=] p— — .
Souyl 1he only important point is that there is

one classical history for each value of the
Par{ field at the south pole @9 = |¢(0)] .

matChlng (¢0777X7 Y) (b’X’O’O)




Finding Solutions

For each ¢g tune remaining parameters to
find curves in (b, x) for which Ir approaches
a constant at large b.

Those are the Lorentzian histories.

Extrapolate backwards using the Lorentizan
equations to find their behavior at earlier
times -- bouncing or singular.

The result is a one-parameter family of
classical histories whose probabilities are

p(@o) o< exp(—21R)
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Classicality Constraint ---Pert. Th.

Small field perts on deSitter space.
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H<3/2
Classical ¢ = (3/A)Y2m  Not-classical

This is a simple consequence of two decaying modes for
u<3/2, and two oscillatory modes for p>3/2.




Origins

No nearly empty models for 4 >3/2, a minimum amount
of matter is needed for classicality.




Probabilities and Origins
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There is a significant probability that the universe
never reached the Planck scale in its entire evolution.




Time Asymmetry

*Individual histories are not time-symmetric, although the
time asymmeties for bouncing universes are not large.

*The ensemble of classical histories is time-symmetic.




Arrows of Time

The growth of fluctuations defines an
arrow of time, order into disorder.

NBWF fluctuations vanish at the
South Pole of the fuzzy instanton.

Fluctuations therefore increase away
from the bounce on both sides.

Time’s arrow points in opposite
directions on the opposite sides of
the bounce.

Events on one side will therefore have
little effect on events on the other.




Inflation

- H
ol

There is scalar field driven
inflation for all histories
allowed by the classicality
constraint, but a small number
of efolds N for the most
probable of them.

= N w = (O)] o)} ~ o |




Probabilities for Our Observations

® The NBWVF predicts probabilities for entire 4-d
histories.

We so not somehow observe 4-d histories from the
outside.

Rather, we are physical systems within the universe,
living at some particular location in spacetime that is
partially specified by our data D.

Probabilities for observations are therefore
conditioned on D.

The probabilities for observations of the CMB for
instance depend on when and where they are made.




Conditioning on Our Data

® The NBWVF predicts probabilities for entire classical
histories.

Our observations are restricted to a part of a light
cone extending over a Hubble volume and located
somewhere in spacetime.

To get the probabilities for our observations we must
sum over the probabilities for the classical spacetimes
that contain our data at least once, and then sum over
the possible locations of our light cone in them.




Sum over location in
homo/iso models

® Assume our data locate us on a surface
of homogeneity, and approx. data on
the past light cone by data in a Hubble
vol. on that surface

® Assume we are rare. (If we are
everywhere there is no sum).

® The sum multiplies the probability for
each history ¢o by

Ny, = ‘/surf/VHubble ~ €XPp (SN) N=# efoldings




Volume Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(do|Ho, p) < exp(3N)p(¢g) x exp(3N — 2IR)

2l 3N-21
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Replication and Regulation

°In an infinite universe volume
weighting breaks down.

°|n an infinite universe the probability e~ repucmy =
. . . SCALE ~
is unity that we are replicated -
elsewhere. We are then not rare.
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*We are quantum physical systems within the universe that

have a probability pe to exist in any Hubble volume.

e Rather than volume, probabilities should be weighted by
the probability that the is at least one instance of us in the

universe (all we know for certain).
N
1 — (1 — pE) &

* This is finite for infinite number of Hubble volumes N
but reduces to volume weighting when pe is small (rare).




Forthcoming Results on
Inhomogeneous Fluctuations

® We calculated the NBWVF probabilities for small
fluctuations away from homogeneity and isotropy
conditioned on at least one instance of our data.

Fluctuations on observable scales are gaussian with
small corrections arising from summing over our
possible locations.

On larger scales that left the horizon in the regime of
eternal inflation the universe is predicted to be
significantly inhomogenous.




The Main Points Again

Classical spacetime is the key to the origin of the
quasiclassical realm.

Only special states in quantum gravity predict classical
spacetime.

The NBWEF predicts probabilities for a restricted set
of entire classical histories that may bounce or be
singular in the past. All of them inflate.

The classicality constraint requires a minimum
amount of scalar field (no big empty U’s).

Probabilities of the past conditioned on limited
present data favor many efolds of inflation.




Happy Birthday Abhay!
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Keep on Quantizing!



