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The Universe of GR in 1956

``In the forty years that have 
elapsed [since the classic 
initial tests] these have 
remained the principal, and, 
with one exception the only 
connection between the 
general theory and 
experience.”

Einstein’s obituary 

Einstein and Oppenheimer  



The Universe 
of Classical GR

Today

GM

Rc2
∼ 1



The Universe 
of Quantum 

General 
Relativity is 
much Larger

The origin of 
subsystems for which 

GR is unimportant 
today lies in the early 

quantum universe 
where gravity was 

central. 



The Quasiclassical Realm 
- A feature of our Universe

• Time --- from the Planck era forward.

• Place --- everywhere in the visible universe.

• Scale --- macroscopic to cosmological. 

The wide range  of time, place and scale on 
which the laws of classical physics hold to an 

excellent approximation.

What is the origin of this quasiclassical realm in a 
quantum universe characterized fundamentally 
by indeterminacy and distibuted probabilities?



Classical spacetime is the 
key to the origin of the 
rest of the quasiclassical 

realm.



Origin of the Quasiclassical Realm

• Classical spacetime emerges from the quantum 
gravitational fog at the beginning.

• Local Lorentz symmetries imply conservation laws. 

• Sets of histories defined by averages of densities of 
conserved quantities over suitably small volumes 
decohere.

• Approximate conservation implies these 
quasiclassical variables are predictable despite the 
noise from mechanisms of decoherence. 

• Local equilibrium implies closed sets of equations of  
motion governing classical correlations in time. 



Only Certain States Lead to 
Classical Predictions

• Classical orbits are not predictions of 
every state in the quantum mechanics of a 
particle.

• Classical spacetime is not a prediction of 
every state in quantum gravity. 



Ψ
Classical spacetime is 
the key to the origin of 
the quasiclassical 
realm. 

The quantum state of 
the universe is the key 
to the origin of 
classical spacetime. 



Loop Quantum Cosmology

Loop quantum gravity provides a 
fundamental framework for 
formulating a theory of the state 
and deriving its predictions for 
cosmology.

But at the moment we all 
seem forced to models. 



The Classical Spacetimes 
of Our Universe

We seek a state that will not just predict some classical 
spacetime but which predicts classical spacetimes with  a 
high probability for properties consistent with our 
cosmological observations. 

•homogeneity and isotropy
•the amount of matter
•the amount of inflation 
•a spectrum of density fluctuations consistent with 
the CMB and growth of large scale structure
•The thermodynamic arrow of time. 

These are late time properties 

(compared to the Planck time) 

for which semiclassical physics 

may be adequate. 



We analyze the classical spacetimes 
predicted by Hawking’s no-boundary 

quantum state for a class of 
minisuperspace models.  

Ψ =

∫
C

δgδφ exp(−I[g, φ])

This Talk:



Minisuperspace Models

Geometry:  Homogeneous, isotropic, closed.  

Matter:  cosmological constant Λ plus homogeneous 
scalar field moving in a quadratic potential. 

are defined as follows:

ds2 = (3/Λ)
[

N2(λ)dλ2 + a2(λ)dΩ2
3

]

(4.3)

where dΩ2
3 is the round metric on the unit three-sphere. With these conventions neither

the scale factor a(λ), nor the lapse N(λ), nor any of the coordinates carry dimensions. The

scaling of the metric used here is different from that employed in [5], as are others in this

paper, but they prove convenient for simplifying the numerical work.

It proves convenient to introduce dimensionless measures H , φ, and µ of Λ, Φ, and m

respectively as follows:

H2 ≡ Λ/(3m2
p), (4.4a)

φ ≡ (4π/3)1/2Φ/mp, (4.4b)

µ ≡ (3/Λ)1/2m. (4.4c)

The scaling for H was chosen so that the scale factor of a classical inflating universe is

proportional to exp(Hmpt) — the usual definition of H . The other scalings were chosen to

make the action simple. In these variables the Euclidean action takes the following simple

form:

I[a(λ), φ(λ)] =
3π

4H2

∫ 1

0

dλN

{

−a

(

a′

N

)2

− a + a3 + a3

[

(

φ′

N

)2

+ µ2φ2

]}

(4.5)

where ′ denotes d/dλ and the surface terms in (4.1) have been chosen to eliminate second

derivatives. The center of symmetry (informally referred to as the ‘south pole’ SP) and the

boundary of the manifold M have arbitrarily been labeled by coordinates λ = 0 and λ = 1

respectively.

Three equations follow from extremizing the action with respect to N , φ, and a. They

imply the following equivalent relations:

(

a′

N

)2

− 1 + a2 + a2

[

−

(

φ′

N

)2

+ µ2φ2

]

= 0 (4.6a)

1

a3N

(

a3 φ′

N

)′

− µ2φ = 0, (4.6b)

1

N

(

a′

N

)′

+ 2a

(

φ′

N

)2

+ a(1 + µ2φ2) = 0 . (4.6c)

These three equations are not independent. The first of them is the Hamiltonian constraint.

From it, and any of the other two, the third follows.
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Theory:  Low-energy effective gravity.

V (Φ) =
1

2
m

2Φ2

As we will see in Section V, the NBWF surface does not slice through the whole of clas-

sical phase space. Quantum mechanics assigns probabilities generally to decoherent sets of

alternative histories of the universe. But only in special circumstances are the probabilities

high for the correlations in time that define classical histories. A classical history therefore

cannot be expected to pass through every point qA. The classicality condition (3.15) gen-

erally specifies a boundary to the surface in phase space on which points corresponding to

classical histories lie.

This restriction of the ensemble of possible classical histories to a bounded surface in

phase space is already a powerful prediction of the NBWF whatever relative probabilities

are predicted for histories in it.

Eq. (3.17) gives the predictions of the NBWR for the probabilities of the histories within

the bounded surface in phase space defining the classical ensemble. As already noted these

probabilities define a history measure because they are conserved along the classical trajec-

tories.

The restrictions on available regions of classical phase space and the probability measures

within those regions are another way of expressing the predictive power of a theory of the

quantum state of the universe like the NBWF.

IV. HOMOGENEOUS ISOTROPIC MINI-SUPERSPACE MODELS

A. Euclidean Action and Equations for its Extrema

We use units where h̄ = c = 1. Newton’s constant G then has units of length squared

and defines the Planck length. This inversely related to the Planck mass mp by G = 1/m2
p.

The Euclidean action I[g, Φ] is a sum of a curvature part IC and a part IΦ for the scalar

field Φ. The general form for the curvature action is:

IC [g] = −
m2

p

16π

∫

M

d4x(g)1/2(R − 2Λ) + (surface terms) (4.1)

The general form for the matter action for a scalar field moving in a quadratic potential is:

IΦ[g, Φ] =
1

2

∫

M

d4x(g)1/2[(∇Φ)2 + m2Φ2] (4.2)

The integrals in these expressions are over the manifold M with one boundary defining the

NBWF (Section 1.2). With a convenient overall scale, the homogeneous, isotropic metrics
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Classical Pred. in NRQM ---Key Points

• When S(q0) varies rapidly and A(q0) varies 
slowly, high probabilities are predicted for 
classical correlations in time of suitably coarse 
grained histories.

•  For each q0 there is a classical history with 
probability:  

Semiclassical form:

Ψ(q0) = A(q0)e
iS(q0)/h̄

p0 = ∇S(q0) p(class.hist.) = |A(q0)|
2



NRQM -- Two kinds of histories

•  S(q0) might arise from a semiclassical 
approximation to a path integral for Ψ(q0) but 
it doesn’t have to.

• If it does arise in this way, the histories for 
which probabilities are predicted are generally 
distinct from the histories in the path integral 
supplying the semiclassical approximation.  

Ψ(q0) = A(q0)e
iS(q0)/h̄



                                                                                                
                                                                                 .

No-Boundary Wave Function (NBWF)

Ψ(b, χ) ≡

∫
C

δNδaδφ exp(−I[N(λ), a(λ), φ(λ)]/h̄)

are defined as follows:

ds2 = (3/Λ)
[

N2(λ)dλ2 + a2(λ)dΩ2
3

]

(4.3)

where dΩ2
3 is the round metric on the unit three-sphere. With these conventions neither

the scale factor a(λ), nor the lapse N(λ), nor any of the coordinates carry dimensions. The

scaling of the metric used here is different from that employed in [5], as are others in this

paper, but they prove convenient for simplifying the numerical work.

It proves convenient to introduce dimensionless measures H , φ, and µ of Λ, Φ, and m

respectively as follows:

H2 ≡ Λ/(3m2
p), (4.4a)

φ ≡ (4π/3)1/2Φ/mp, (4.4b)

µ ≡ (3/Λ)1/2m. (4.4c)

The scaling for H was chosen so that the scale factor of a classical inflating universe is

proportional to exp(Hmpt) — the usual definition of H . The other scalings were chosen to

make the action simple. In these variables the Euclidean action takes the following simple

form:

I[a(λ), φ(λ)] =
3π

4H2

∫ 1

0

dλN

{

−a

(

a′

N

)2

− a + a3 + a3

[

(

φ′

N

)2

+ µ2φ2

]}

(4.5)

where ′ denotes d/dλ and the surface terms in (4.1) have been chosen to eliminate second

derivatives. The center of symmetry (informally referred to as the ‘south pole’ SP) and the

boundary of the manifold M have arbitrarily been labeled by coordinates λ = 0 and λ = 1

respectively.

Three equations follow from extremizing the action with respect to N , φ, and a. They

imply the following equivalent relations:

(

a′

N

)2

− 1 + a2 + a2

[

−

(

φ′

N

)2

+ µ2φ2

]

= 0 (4.6a)

1

a3N

(

a3 φ′

N

)′

− µ2φ = 0, (4.6b)

1

N

(

a′

N

)′

+ 2a

(

φ′

N

)2

+ a(1 + µ2φ2) = 0 . (4.6c)

These three equations are not independent. The first of them is the Hamiltonian constraint.

From it, and any of the other two, the third follows.
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The integral is over all                   which are 
regular on a disk and match the           on its 
boundary.  The complex contour is chosen so that 
the integral converges and the result is real.  

(a(λ), φ(λ))
(b, χ)



                                                                 .

Semiclassical Approx. for the NBWF

• In certain regions of superspace the steepest 
descents approximation may be ok.k. 

• To leading order in ħ the NBWF will then have the 
semiclassical form:

• The next order will contribute a prefactor which we 
neglect. Our probabilities are therefore only relative. 

Ψ(b, χ) ≡

∫
C

δNδaδφ exp(−I[N(λ), a(λ), φ(λ)]/h̄)

In quantum cosmology states are represented by wave functions on the superspace of

three-geometries and spatial matter field configurations. For the homogeneous, isotropic,

spatially closed, minisuperspace models with one scalar field that are the subject of this pa-

per, wave functions depend on the scale factor b determining the size of the spatial geometry

and the value χ of the homogeneous scalar field. Thus, Ψ = Ψ(b, χ).

A class of states of particular interest are those whose wave functions can be approximated

in the semiclassical form (or superpositions of such forms) to leading order in h̄

Ψ(b, χ) ≈ exp{[−IR(b, χ) + iS(b, χ)]/h̄} (1.1)

in some region of superspace with both IR and S real and (∇S)2 $ (∇IR)2. These can

be shown to predict an ensemble of suitably coarse-grained Lorentzian histories with high

probabilities for correlations in time governed by classical deterministic laws for spacetime

geometry and matter fields. The action S determines the ensemble as in familiar Hamilton-

Jacobi theory. Classical histories not contained in the ensemble have zero probability in this

approximation. The classical histories that are members of the ensemble have probabilities

proportional to exp[−2IR(b, χ)]/h̄]. In this way the choice of a particular state becomes

predictive.

The no-boundary wave function is defined by the sum-over-histories

Ψ(b, χ) =

∫

C

δaδφ exp(−I[a(τ), φ(τ)]/h̄). (1.2)

Here, a(τ) and φ(τ) are the histories of the scale factor and matter field and I[a(τ), φ(τ)]

is their Euclidean action. The sum is over cosmological geometries that are regular on a

manifold with only one boundary at which a(τ) and φ(τ) take the values b and χ. The

integration is carried out along a suitable complex contour C which ensures the convergence

of (1.2) and the reality of the result [13].

For some ranges of b and χ it may happen that the integral in (1.2) can be approximated

by the method of steepest descents. Then the wave function will be well approximated by a

sum of terms of the form (1.1) — one for each extremizing history (a(τ), φ(τ)) matching (b, χ)

on the boundary of the manifold and regular elsewhere. In simple cases these extremizing

histories may describe the nucleation of a Lorentzian spacetime by a Euclidean instanton.

But in general they will be complex — “fuzzy instantons”. For each contribution IR(b, χ)

is the real part of the action I[a(τ), φ(τ)] evaluated at the extremizing history and −S(b, χ)

4



Instantons and Fuzzy Instantons

In simple cases the extremal geometries may be real 
and involve Euclidean instantons, but in general they 
will be a complex --- fuzzy instantons. 



                          .

Classical Prediction in MSS and 
The Classicality Constraint

p(class. hist.) ∝ exp(−2IR/h̄)

In quantum cosmology states are represented by wave functions on the superspace of

three-geometries and spatial matter field configurations. For the homogeneous, isotropic,

spatially closed, minisuperspace models with one scalar field that are the subject of this pa-

per, wave functions depend on the scale factor b determining the size of the spatial geometry

and the value χ of the homogeneous scalar field. Thus, Ψ = Ψ(b, χ).

A class of states of particular interest are those whose wave functions can be approximated

in the semiclassical form (or superpositions of such forms) to leading order in h̄

Ψ(b, χ) ≈ exp{[−IR(b, χ) + iS(b, χ)]/h̄} (1.1)

in some region of superspace with both IR and S real and (∇S)2 $ (∇IR)2. These can

be shown to predict an ensemble of suitably coarse-grained Lorentzian histories with high

probabilities for correlations in time governed by classical deterministic laws for spacetime

geometry and matter fields. The action S determines the ensemble as in familiar Hamilton-

Jacobi theory. Classical histories not contained in the ensemble have zero probability in this

approximation. The classical histories that are members of the ensemble have probabilities

proportional to exp[−2IR(b, χ)]/h̄]. In this way the choice of a particular state becomes

predictive.

The no-boundary wave function is defined by the sum-over-histories

Ψ(b, χ) =

∫

C

δaδφ exp(−I[a(τ), φ(τ)]/h̄). (1.2)

Here, a(τ) and φ(τ) are the histories of the scale factor and matter field and I[a(τ), φ(τ)]

is their Euclidean action. The sum is over cosmological geometries that are regular on a

manifold with only one boundary at which a(τ) and φ(τ) take the values b and χ. The

integration is carried out along a suitable complex contour C which ensures the convergence

of (1.2) and the reality of the result [13].

For some ranges of b and χ it may happen that the integral in (1.2) can be approximated

by the method of steepest descents. Then the wave function will be well approximated by a

sum of terms of the form (1.1) — one for each extremizing history (a(τ), φ(τ)) matching (b, χ)

on the boundary of the manifold and regular elsewhere. In simple cases these extremizing

histories may describe the nucleation of a Lorentzian spacetime by a Euclidean instanton.

But in general they will be complex — “fuzzy instantons”. For each contribution IR(b, χ)

is the real part of the action I[a(τ), φ(τ)] evaluated at the extremizing history and −S(b, χ)

4

•Following the NRQM analogy this semiclassical form 
will predict classical Lorentian histories that are the 
integral curves of  S, ie the solutions to:

•However, we can expect this only when S is rapidly  
varying and IR is slowly varying, i.e. 

These consitute the classicality condition. 
Hawking (1984), Grischuk &Rozhansky (1990), Halliwell(1990)

pA = ∇AS

|∇AIR|" |∇AS| .|(∇IR)2|"| (∇S)2|



Class. Prediction --- Key Points
•The NBWF predicts probabilities for an ensemble 
of entire, 4d, classical histories. 

•These real, Lorentzian, histories are not the same as 
the complex extrema that supply the semiclassical 
approximation to the integral defining the NBWF. 



No-Boundary Measure on 
Classical Phase Space 

The NBWF predicts an ensemble of classical histories  
that can be labeled by points in classical phase space. 
The NBWF gives a measure on classical phase space. 

The NBWF predicts a one-parameter subset of the two-
parameter family of classical histories, and the classicality 

constraint gives that subset a boundary. 

Gibbons  
Turok ‘06 



Singularity Resolution

• The NBWF predicts probabilities for entire 
classical histories not their initial data. 

• The NBWF therefore predicts probabilities 
for late time observables like CMB 
fluctuations whether or not the origin of the 
classical history is singular. 

• The existence of singularities in the 
extrapolation of some classical approximation 
in quantum mechanics is not an obstacle to 
prediction but merely a limitation on the 
validity  of the approximation as loop 
quantum cosmology has shown. 



Equations and BC

φ(0) ≡ φ0e
iγ

(φ0, γ, X, Y ) ←→ (b, χ, 0, 0)

B. Complex Gauge

The extremizing solutions a(λ), φ(λ), and N(λ) will generally be complex. Assuming

they are analytic functions, the integral (4.5) can be thought of as taken over a real contour

in the complex λ plane between 0 and 1. Following Lyons [5] it is then useful to introduce

a new complex variable τ defined by

τ(λ) ≡

∫ λ

0

dλ′N(λ′) (4.7)

The function τ(λ) defines a contour in the complex τ -plane for each lapse function N(λ).

Conversely each finite contour starting at τ = 0 defines a function N(λ). The action (4.5) can

be rewritten as an integral over the countour C(0, υ) in the complex τ -plane corresponding

to the N(λ) in (4.5) and connecting τ = 0 with an endpoint we denote by υ. Specifically,

I[a(τ), φ(τ)] =
3π

4H2

∫

C(0,υ)

dτ
[

−aȧ2 − a + a3 + a3
(

φ̇2 + µ2φ2
)]

(4.8)

and ḟ denotes df/dτ .

The equations (4.6) also simplify in the new variable, viz:

ȧ2 − 1 + a2 + a2
(

−φ̇2 + µ2φ2
)

= 0 (4.9a)

φ̈ + 3(ȧ/a)φ̇ − µ2φ = 0, (4.9b)

ä + 2aφ̇2 + a(1 + µ2φ2) = 0 . (4.9c)

These are the equations we will use to calculate the complex extremizing geometries and

matter field configurations.

Two contours that connect the same endpoints in the τ -plane give the same value for the

action provided they can smoothly be distorted into one another. They are equivalent as far

as the semiclassical approximation to the NBWF is concerned. Another way of saying this

is that (4.7) defines a complex coordinate transformation under which the action is invariant

if the contours can be smoothly distorted into one another.

This suggests that a solution to equations (4.9) should be considered as a pair of complex

analytic functions a(τ) and φ(τ). We can evaluate the action with these functions by picking

any convenient contour in τ connecting the center of symmetry to the boundary. We will

exploit this in what follows.
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a(0) = 0, ȧ(0) = 1, φ̇(0) = 0

Extremum
Equations:

Regularity at 
South Pole: 

Parameter 
matching: 

You won’t follow this. 
I just wanted to show how 

much work we did. 

The only important point is that there is 
one classical history for each value of the 

field at the south pole                    .   φ0 ≡ |φ(0)|

h̄ = c = G = 1, µ ≡ (3/Λ)1/2m, φ ≡ (4π/3)1/2Φ, H2
≡ Λ/3



Finding Solutions

• For each     tune remaining parameters to 
find curves  in        for which     approaches 
a constant at large b. 

• Those are the Lorentzian histories.

• Extrapolate backwards using the Lorentizan 
equations to find their behavior at earlier 
times -- bouncing or singular. 

• The result is a one-parameter family of 
classical histories whose probabilities are  

φ0

(b, χ) IR

p(φ0) ∝ exp(−2IR)



Gallery

100 200 300 400
t

25

50

75

100

125

150

a

100 200 300 400 500 t

25

50

75

100

125

150

175

a

-2 -1 1 2 t

1

2

3

4

a

100 200 300 400
t

-0.15

-0.1

-0.05

0.05

0.1

0.15

Φ

-2 -1 1 2
t

1.2

1.4

1.6

1.8

2

2.2

Φ

20 40 60 80 100 t

-0.15

-0.1

-0.05

0.05

0.1

Φ

φ0 = 1.32

µ = 63µ = 2.25µ = 1.65

µ ∼ m/Λ
1/2



Classicality Constraint ---Pert. Th. 
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Small field perts on deSitter space. 

μ<3/2 μ>3/2

Classical Not-classical 

This is a  simple consequence of two decaying modes for          
 μ<3/2,  and two oscillatory modes for μ>3/2.

µ ≡ (3/Λ)1/2m



Origins 

No nearly empty models for μ >3/2,  a minimum amount 
of matter is needed for classicality. 

µ
≡

(3/Λ
)
1
/
2m



Probabilities and Origins

There is a significant probability that the universe 
never reached the Planck scale in its entire evolution.

µ ≡ (3/Λ)1/2m



Time Asymmetry 

1 2 3 4 5 Φ0

-1

-0.8

-0.6

-0.4

-0.2

Η

•Individual histories are not time-symmetric, although the 
time asymmeties for bouncing universes are not large. 

•The ensemble of classical histories is time-symmetic. 

η ≡

φ̇b

φb



Arrows of Time 
• The growth of fluctuations defines an 

arrow of time, order into disorder. 

• NBWF fluctuations vanish at the 
South Pole of the fuzzy instanton. 

• Fluctuations therefore increase away 
from the bounce on both sides. 

• Time’s arrow points in opposite 
directions on the opposite sides of 
the bounce.  

• Events on one side will therefore have 
little effect on events on the other.  

compare Caroll & Chen



Inflation
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There is scalar field driven 
inflation for all histories 
allowed by the classicality 
constraint, but a small number 
of efolds N for the most 
probable of them. 
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Probabilities for Our Observations
• The NBWF predicts probabilities for entire 4-d 

histories. 

• We so not somehow observe 4-d histories from the 
outside. 

• Rather, we are physical systems within the universe, 
living at some particular location in spacetime that is 
partially specified by our data D. 

• Probabilities for observations are therefore 
conditioned on D. 

• The probabilities for observations of the CMB for 
instance depend on when and where they are made.



Conditioning on Our Data 

• The NBWF predicts probabilities for entire classical 
histories. 

• Our observations are restricted to a part of a light 
cone extending over a Hubble volume and located 
somewhere in spacetime.

• To get the probabilities for our observations we must 
sum over the probabilities for the classical spacetimes 
that contain our data at least once,  and then sum over 
the possible locations of our light cone in them.



Sum over location in 
homo/iso models

• Assume our data locate us on a surface 
of homogeneity, and approx. data on 
the past light cone by data in a Hubble 
vol. on that surface

• Assume we are rare. (If we are 
everywhere there is no sum).

• The sum multiplies the probability for 
each history      by 

Page 97, Hawking 07

φ0

N= # efoldingsNh = Vsurf/VHubble ≈ exp (3N)



Volume Weighting favors Inflation
By itself, the NBWF + classicality favor low inflation, 
but we are are more likely to live in a universe that has 
undergone more inflation, because there are more 
places for us to be. 

p(φ0|H0, ρ) ∝ exp(3N)p(φ0) ∝ exp(3N − 2IR)



Replication and Regulation
•In an infinite universe volume 
weighting breaks down. 
•In an infinite universe the probability 
is unity that we are replicated 
elsewhere.  We are then not rare.  

Srednicki a.o.  07
Hertog a.o     09

•We are quantum physical systems within the universe that 
have a probability pE to exist in any Hubble volume.

• Rather than volume, probabilities should be weighted by 
the probability that the is at least one instance of us in the 
universe (all we know for certain). 

• This is finite for infinite number of Hubble volumes Nh 

but reduces to volume weighting when pE is small (rare).

1− (1− pE)Nh



Forthcoming Results on 
Inhomogeneous Fluctuations

• We calculated the NBWF probabilities for small 
fluctuations away from homogeneity and isotropy 
conditioned on at least one instance of our data. 

• Fluctuations on observable scales  are gaussian with 
small corrections arising from summing over our 
possible locations. 

• On larger scales that left the horizon in the regime of 
eternal inflation the universe is predicted to be 
significantly inhomogenous. 



The  Main Points Again

• Classical spacetime is the key to the origin of the 
quasiclassical realm.

• Only special states in quantum gravity predict classical 
spacetime.

• The NBWF predicts probabilities for a restricted set 
of entire classical histories that may bounce or be 
singular in the past.  All of them inflate.   

• The classicality constraint requires a minimum 
amount of scalar field (no big empty U’s). 

• Probabilities of the past conditioned on limited 
present data favor many efolds of inflation.  

Homogeneous, isotropic, scalar field in a quadratic potential,  μ >3/2 



Happy Birthday Abhay!

Keep on Quantizing!


