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The Newtonian Limit
Motivation: linearization, a clear concept. New-
tonian and post–Newtonian expansions are more
of an art.

The relation between Newton’s and Einstein’s
theories of gravity was clarified by Jürgen Ehlers,
however, only resently mathematical results
on the Newtonian limit and p–N–expansions
have been obtaine by Todd Oliynyk.

The purpose of this talk is to explain these
results.

The plan of the talk:

• Ehlers frame theory ( Ehlers, 1981)

J. Ehlers, “On limit relations between, and
approximative explanations of, physical theo-
ries”. In: R. Barcan Marcus, G.J.W. Dorn, and P.
Weingartner, Logic, methodology and philosophy of
science VII, North Holland, Amsterdam, 1986, 387-
403.

• early results (Lottermoser,1990, Heilig, 1993,
Rendall, 1994)

• new results ( Oliynyk, 2006)
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Frame Theory
The mathematical structures of Newton’s and
Einstein’s theories are rather differern:

Newton:

flat, 3–dim Euklidian space, absolut time,

gravitational potential

Einstein:

4–dim spacetime, field equations from

geometrical objects

Building on earlier work by Cartan, Friedrichs,
Ehlers found a formulation which combines-
both theories!

Consider the following collection of object:

(M4,Γi
kl, s

ik, tik,Tik,λ)

where: M4 is a 4–dim manifold

Γi
kl is a symmetric connection

sik, tik,Tik are symmetric tensor fields on M4

λ ≥ 0 , constant
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• tik: the time metric

• sik: the space metric

• Γl
ik: a connection, the gravitational field

• Tik: the matter tensor

The laws of the theory contain these fields
and a real–valued parameters λ .

Here are some of the laws:

tikskl = −λδl
i .

tik;l = 0 , sik;l = 0

Ri
k
l
•m = Rl

m
i
•k

Rik = 8π(T••
ik − 1

2tikTj•
j )

Tik
;k = 0

Matter model perfect fluid:

Tik = (ρ + λp)UiUk + psik

where tikUiUk = 1, ρ > 0, ρ + λp > 0
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The laws for these objects imply that for λ = 0
we have Newton’s theory and λ > 0 is Ein-
stein’s theory.

For example: one can show that for λ = 0
there exists a scalar t, absolute time, such
that tik = t,it,k

A key object is the connection Γi
kl which in

Newton’s theory is defined by the motion of
freely falling particles in the gravitational field.

note: Minkowski space:

ηik = diag(−c2,1,1,1) , ηik = diag(− 1
c2 ,1,1,1)

with λ = 1
c2 we find

tik = −ληik = diag(1,λ,λ,λ)

sik = ηik = diag(−λ,1,1,1)

meaningful for λ = 0

If we use units, ”c” appears naturally, its par-
ticular value depends on units.

A combined frame work for the theories. How-
ever, phenomena are described by solutions.
Does the frame theory help to understand the
relation between solutions in both theories?
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Newtonian Limit
The frame theory allows to define the New-
tonian limit of a λ – family of solutions of
Einstein’s theory:

gik(xj,λ),Tik(xj,λ),0 > λ

has a Newtonian limit, if the fields

gik, tik := −λgik,Γi
kl ,Tik

have a limit for λ → 0 and this limit satisfies
the assumptions of the frame theory for λ = 0.

example:

−λ−1(1− 2λ

r
)dt2 +

1
1− 2λ

r

dr2 + r2(dθ2 + sin2 θdφ2)

limits for gik,−λgik .

Static fluid ball solutions have a Newtonian
limit. More examples are known.

Conceptual problems concerning the meaning
of c → ∞ can be clarified by considering the
scalings of the fields which is implied by the
freedom of choosing units.
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How does one construct such families?

One makes an ansatz, ( as one does in deriva-
tions of p–N–expansions.)

For example: (ηik = diag(−λ,1,1,1))

gik = ηik + λhik(xl,λ) ,Tik = . . .

Putting this into the field equations gives a
PDE system containing λ explicitly. However,
if one does this just naively, there will be no
PDE system for λ = 0 because powers of λ,λ−1

will appear.

Ehlers found a way around this problem and
proposed a set of variables such that the PDEs
have a limit for λ = 0.

(never published first appeared in the PhD
thesis of Lottermoser 1988)

Strategy:

1. find PDE system regular for λ = 0

2. find λ–family of solutions of the constraint
which have a Newtonian limit

3. Show that the evolved data have also a
Newtonian limit
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Early Results

M. Lottermoser, PhD thesis 1988

A convergent post–Newtonian approximation
for the constraint equations in general relativ-
ity

Annales de H.P. 57,n.3 (1992)

U.Heilig PhD thesis (1993)

On the Existence of Rotating Stars in General
Relativity

Commen.Math.Phys.166(1995)

Both use the variables proposed by Ehlers:

Gik :=
1p

|det(gik)|
gik

U ik :=
1
4

λ−
3
2 (Gik − Gik

0 )

Gik
0 = diag(−λ

1
2 ,λ−

1
2 ,λ−

1
2 ,λ−

1
2 )

(the density of the Minkowski metric ηik =
diag(−λ,1,1,1))
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This implies for the spacetime metric

g00 = −λ + λ22U + . . .

g0I = −λ24WI + . . .

gIK = δIK+λ2UδIK+λ22
°
(3U2 −TrZδIK) + 2ZIK

¢
+. . .

with U := U00 ,WJ := U0J ,ZIK := UIK

The field equations in harmonic coordinates

(Ḡik
0 + 4λ2U ik)U jl

,ik + Fjl(λ,U , ∂U) = 4πG|d|Tjl

Ḡik
0 = diag(−λ,1,1,1)

d := λdet(Gik) = 1− λ4U + . . .

This is a reglar system also for λ = 0.

However, hyperbolic goes to elliptic!

∆U = 4πGρ

∆WI = 4πGJI

∆ZIJ = 4πGSIJ + U,IU,J +
1
2
|gradU|2δIJ

ρ,JI,SIJ are the matter fields at λ = 0.
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Lottermoser studies solutions of the constraints:

4πGλgT00 = ∆U + F00 − λZCD
,CD+

4λ2(ZCDU,CD − 2WC
,CDWD + UZCD

,CD)

4πGλgT0J = ∆WJ+F0J−λŻJD
,D+λ2ZCDWJ

,CD . . .

Prescribe T00,T0J,ZIJ, ŻIJ (possible depend-
ing on λ.)

solve for U,WJ

The harmonicity condition

U̇ = −Wj
,j , ẆK = −ZkL

,L

determine the time derivatives of U,WJ.

For small λ asymptotically flat solutions do
exist on R3.

Note the ”free data” for the gravitational field
ZIJ, ŻIJ.
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An important observation (Lottermose):

Suppose we can evolve these data and the so-
lution has a limit, differentiable in λ. Then
the time evolution quations imply for λ = 0

∆ZIJ − 4πGTIJ
0 + U,IU,J +

1
2
|gradU|2δIJ = 0

This is a restriction on the datum which we
considered as free!

Post–Newtonian expansion has to do with the
differentiability in λ

gik = δik + λhik
1 (xl) + λ2hik

2 (xl) + . . .

On the formal leval smoothness in λ implies
that the ”free gravitational data” are uniquely
determined by the matter data!
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Heilig used the equations above in a station-
ary situation. Then all equations are elliptic
also for λ > 0.

With the implicit function theorem, he showed
the existens of slowly rotating, axisymmetric
fluid configurations. ( for a resticted class of
equations of state).

The family is analytic in λ and allows p–N–
expansions of any order.

Newtonian limit considerations are not just
”philosophical”!
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A.Rendall

The Newtonian limit for asymptotically flat
solutions of the Vlasov–Einstein–system

Commen.Math.Phys. 163 (1994)

This is the first theorem, which shows the
existence of time dependent λ–families with
Newtonian limits.

The matter is described by kinetic theory.
The key difficulty is to demonstrate, that the
λ–family exist for an intervall 0 < t < T , in-
dependent of λ.
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New Results

T.Oliynyk

The Newtonian Limit for PerfectFluids

Commen.Math.Phys. 276(2007)

Post–Newtonian expansion for perfect fluids

Commen.Math.Phys. to appear , (2008)

The fast Newtonian limit for perfect fluids

preprint (2009)

Cosmological post–Newtonian expansions to
arbitrary order

preprint (2009)
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Oliynyk uses ūik a slight variation of the Ehlers
variables

gik =
≤

−det(Q)
Qik , ≤ =

√
λ

Q00 = −≤2 + 4≤4ū00

Q0J = 4≤3ū0J

QIJ = δIJ + ≤2ūIJ

The matter is a ”Makino fluid”, a fluid with
a particular equation of state for which there
is an existence theorem for finite bodies.

(p = Kρ(n+1)/n)

Matter variables: fluid flow wJ, α related to
the density
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Combine V = (ūik, ∂jūik,wj,α)

Einstein–Euler in harmonic gauge

b0(≤V)∂0V =
1
≤
cI∂IV + bI(≤,V)I∂iV+

+f(≤,V) +
1
≤
g(V)V + h(≤)

a symmetric hyperbolic system; cI is constant!

The term 1
≤ g(V)V can be moved to the term

with cI by a non local transformation (Poisson
integral) which changes ū00 to u00. For W =
(uik, ∂juik,wj,α) one obtains

B0(≤W)∂0W =
1
≤
cI∂IW + BI(≤,W)∂IW+

+F(≤,V) + F(≤,W) + H(≤)

a non–local symmetric hyperbolic system.

Singular systems of this type are well studied.

Klainermann, Majda, Kreiss, Schochet
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The constraints for the initial data are treated
as by Lottermoser:

Free data are: uIJ, ∂0uIJ,wJ,α

The remaining data u00,u0K are determined
as solutions of the constraints (plus harmonic-
ity).

Sophisticated functional analysis; ≤ goes into
the weights of some weighted Sobolev spaces.

Three cases are studies: (different ”amount
of radiation”)

1.) Newtonian limit

uIJ(0) = ≤zIJ , ∂0uIJ(0) = zIJ
0 ,wJ

0 ,α0

The data determine solutions uIJ
≤ ,wJ

≤ ,α≤ with
a limit for ≤→ 0 which satisfies the Newton –
Euler–system. There are estimtes of the typ

||ρ≤ − ρ0|| < ≤ , ||uik
≤ − δi

0δk
0Φ|| < ≤

(Φ = u00
0 ) One has a limit in the sense of

Ehlers after some time T? > 0.
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2.) Fast Newtonian limit

Here the data are more general

ūIJ(0) = zIJ , ≤∂tūIJ(0) = zIJ
0 ,wJ

0 ,α0

and convergence as described in 1) is again
true after some time T? > 0.
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3.) Post–Newtonian expansion

ūIJ(0) = ≤zIJ , ∂tūIJ(0) = zIJ
0 are determined

from the matter data wJ
0 ,α0 by equations of

the typ

∆ZIJ − 4πGTIJ
0 + U,IU,J +

1
2
|gradU|2δIJ = 0

It can be shown that the 1–p–N expansion
exists

g00 = − 1
≤2
−2Φ0−≤h00

1 −≤2
≥
3
°
Φ0

¢2+h00
2

¥
+O(≤3),

g0I = ≤2h0I
1 + ≤3h0I

2 + O(≤4)

gIJ = δIJ−2≤2δIJΦ0−≤3hIJ
1 −≤4

°
(Φ0)2δIJ + hIJ

2

¢
+O(≤5).

With more assumption on the free data the
second p–N expansion exists.

It is important to to note that higher order
expansions in ≤ can be generated for gij. How-
ever, these higher order terms will, in general,
depend on ≤ in a non-analytic fashion.
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Cosmological post–Newtonian expansion

Consider perfect fluid solutions of Einstein’s
theory on R×T3

There are also Newtonian solutions ”of this
type”.

The techniques used before can be applied
and one obtains solutions with a Newtonian
limit.

A surprising result is, that with appropriate
restrictions on the initial data, one obtains p–
N–expansions of any prescribed finite order!


