Quantum Gravity and the

 information loss problemMadhavan Varadarajan
Raman Research Institute, Bangalore, India

Standard Picture:

$\square \mathrm{BH}$ radiates at $\mathbf{k} \mathbf{T}_{\mathbf{H}}=\frac{\mathbf{m}_{\mathbf{P}}}{\mathrm{M}} \mathbf{m}_{\mathbf{P}} \mathbf{c}^{\mathbf{2}}$.
$■$ More it radiates, the hotter it gets. But temp small for large black holes. $\mathrm{M}=$ Solar mass, $\mathrm{T}_{\mathbf{H}} \sim \mathbf{1 0}^{-\mathbf{1 5}{ }^{\circ} \mathrm{K}}$

■ So evaporation very slow till $\mathrm{M} \sim \mathrm{m}_{\mathrm{P}}$. Quasistatic process.
■ Endpt $=\mathbf{m}_{\mathbf{P}}+$ Hawking Radiation. Initial matter $=$ pure quantum state \Rightarrow INFO LOSS.

AB Paradigm:

■ A quantum extension of classical sptime opens up beyond singularity.

■ Info recovered thru correlations of Hawking Radiation with matter on "other side of singularity"

CGHS Model:

$\mathbf{S}=\mathbf{S}\left(\mathrm{g}_{\mathrm{ab}}, \phi\right)-\frac{1}{2} \int \mathrm{~d}^{2} \mathbf{x} \sqrt{\mathrm{~g}} \mathrm{~g}^{\mathbf{a b}} \nabla_{\mathrm{a}} \mathrm{f} \nabla_{\mathrm{b}} \mathbf{f}$
■ Coupling constants: $[\mathbf{G}]=\mathbf{M}^{-1} \mathbf{L}^{-1}[\kappa]=\mathbf{L}^{-1}$
■ 2d: $\mathbf{g}^{\mathbf{a b}}=\boldsymbol{\Omega} \eta^{\mathrm{ab}}, \eta \rightarrow-(\mathrm{dt})^{2}+(\mathrm{dz})^{2}$, null coordinates:

$$
\mathbf{z}^{ \pm}=\mathbf{t} \pm \mathbf{z}
$$

■ Equations of Motion:

$$
\partial_{+} \partial_{-} \mathbf{f}=\mathbf{0} \Rightarrow \mathbf{f}=\mathbf{f}_{+}\left(\mathbf{z}^{+}\right)+\mathbf{f}_{-}\left(\mathbf{z}_{-}\right)
$$

\square Remaining eqns can be solved for the metric and dilaton in terms of stress energy of \mathbf{f}. Thus, true degrees of freedom

$$
=\mathbf{f}_{+}\left(\mathbf{z}^{+}\right), \mathbf{f}_{-}\left(\mathbf{z}^{-}\right)
$$

BH solution:

■ QFT on CS calculation a'la Hawking (Giddings, Nelson) yields Hawking radiation at $\mathcal{I}_{\mathbf{R}}^{+}$with $\mathbf{k T}_{\mathbf{H}}=\kappa \boldsymbol{h}$ indep of mass.
■ Remark: BH Sptime occupies only part of $\left(\mathbf{z}^{+}, \mathbf{z}^{-}\right)$plane.

FULL QUANTUM THEORY:

$\square \partial_{+} \partial_{-} \hat{\mathbf{f}}=\mathbf{0}: \hat{\mathbf{f}}=\hat{\mathbf{f}}_{+}\left(\mathbf{z}^{+}\right)+\hat{\mathbf{f}}_{-}\left(\mathbf{z}_{-}\right)$
$\hat{\mathbf{f}}=$ free scalar field on $\eta_{\mathbf{a b}}$.
Fock repn: $\mathcal{F}^{+} \times \mathcal{F}^{-}$.

Arena for Quantum Theory is entire Minkowskian Plane

\square Note: $\mathcal{F}^{+} \times \mathcal{F}^{-}$is Hilbert space for gravity-dilaton-matter system, not only for matter.

■ Dilaton, Metric are operators on this Hillbert space and satisfy (at the moment, formal) operator eqns relating them to $\hat{\mathbf{T}}_{\mathbf{a b}}$.
■ Open Issue: QFT on Quantum sptime, $\hat{\mathbf{T}}_{\mathrm{ab}}=\hat{\mathbf{T}}_{\mathrm{ab}}(\hat{\boldsymbol{\Omega}})$
■ Despite this, framework itself allows an analysis of Info Loss Problem.

- Choose "quantum black hole" state $\left|\mathbf{f}_{+}\right\rangle \times\left|\mathbf{0}_{-}\right\rangle$- analog of classical data $\mathbf{f}=\mathbf{f}_{+}\left(\mathbf{z}^{+}\right), \mathbf{f}_{-}=\mathbf{0}$
- Info loss issue takes the form: What happens to |0_> part of the state during BH evaporation?

We shall extract physics from the operator equations using different approximations/Ansatz:

■ Trial Solution to the Operator eqns using $\eta_{\mathbf{a b}}$ to define stress energy operator

■ Mean Field approximation (analog of semiclassical gravity)

Trial Solution to Oprtr Eqns:

$■$ Use η_{ab} to define $\hat{\mathbf{T}}_{\mathrm{ab}}$. Then $\hat{\mathbf{T}}_{+-}=\mathbf{0}$, can solve oprtr equations explicitly

■ Exp value $\langle\hat{\boldsymbol{\Omega}}\rangle=\boldsymbol{\Omega}_{\text {classical }}$!
$■$ On singularity $\langle\hat{\boldsymbol{\Omega}}\rangle=\mathbf{0}$ but $\hat{\Omega}$ still well defined as operator. Large fluctuations of $\hat{\Omega}$ near classical singularity
■ $\hat{\boldsymbol{\Omega}}$ well defined on whole
Minkowskian plane, even "above" singularity: Quantum Extension of Classical Spacetime.

■ Hawking Effect: Quantum State of gravity-dilaton-matter system $\left|\mathbf{f}_{+}\right\rangle \times\left|\mathbf{0}_{-}\right\rangle$. $\left|\mathbf{0}_{-}\right\rangle$interpreted by asymptotic inertial observers in expectation-value- geometry at $\mathcal{I}_{\text {Rclassical }}^{+}$as Hawking radiation!

■ But: No backreaction of this radtn

Mean Field Approximation:

■ Take exp value of oprtr equations w.r.to $\left|\mathbf{f}_{+}\right\rangle \times\left|\mathbf{0}_{-}\right\rangle$.
■ Neglect fluctuations of gravity-dilaton but not of matter
■ Get exact analog of "semiclassical gravity" 4d eqns, $" \mathrm{G}_{\mathrm{ab}}=8 \pi \mathbf{G}\left\langle\hat{\mathbf{T}}_{\mathrm{ab}}\right\rangle$ ".
■ Here $\left\langle\hat{\mathbf{T}}_{\mathrm{ab}}\right\rangle \sim$ classical $+\mathbf{0}(\mathbf{h})$ (geometry)

Mean Field Numerical Soln:

MF eqns for CGHS studied numerically by Piran-Strominger-Lowe, analytically by Susskind-Thorlacius:

Asymptotic Analysis near \mathcal{I}_{R}^{+}:

■ Knowledge of underlying quantum state of CGHS system + MFA eqns near $\mathcal{I}_{\mathbf{R}}^{+}$dictate the response of asympt geometry to energy flux at $\mathcal{I}_{\mathbf{R}}^{+}$.

- Analysis of eqns implies (almost) uniquely:
- If Hawking flux smoothly vanishes along $\mathcal{I}_{\mathbf{R}}^{+}$then $\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\text {MFA }}$ is exactly as long as $\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\eta_{\mathrm{ab}}}$
- |0-> is a normalized pure state in Hilbert space of freely falling observers (for $\mathbf{g}_{\mathbf{a b}}$) at $\mathcal{I}_{\mathbf{R}}^{+}$ \Rightarrow NO INFO LOSS.

FINAL PICTURE:

■ Interior to past of MFA singularity: MFA numerics.
■ Near $\mathcal{I}_{\mathbf{R}}^{+}$: Asymptotic Analysis
■ Conceptual underpinnings provided by oprtr equations suggest:

- singularity resolution
- extension of classical sptime

■ $\left.\mathbf{0}_{-}\right\rangle$is pure state populated with particles in Hilbert space of asymp observers
■ Information emerges in correlations between ptcles emitted at early and late times
■ Open issue: How fast does the information come out? What exactly is information in QFT?

SUMMARY:

Non-pert quantization + MFA numerics + asympt analysis point to unitary pic of BH evaporation with key features:

■ Singularity Resolution.
■ Extension of Classical Sptime.
■ No such thing as classically empty sptime.
NOTE: MFA requires large \mathbf{N}, can be taken care of.

CGHS wrk in collaboration with Abhay Ashtekar and Victor Taveras.

HAPPY BIRTHDAY ABHAY!!

INFO LOSS PROBLEM:

■ $\left.\mathbf{0}_{-}\right\rangle$is pure state in Hillbert space of asymp observers
■ Intuitively "nothing emmitted after \mathbf{P} ", "All info emerges before \mathbf{P} in Hawking radtn".
$\Rightarrow|\Psi\rangle=\mid$ vac $\rangle_{>P} \otimes \mid$ purestate $\rangle_{<\mathbf{P}}$.
NOT TRUE! $\left\langle\hat{\mathbf{f}}\left(\mathbf{P}_{\mathbf{1}}\right) \hat{\mathbf{f}}\left(\mathbf{P}_{\mathbf{0}}\right)\right\rangle \neq \mathbf{0}$ - Correlations!

■ Where does intuition go wrong?
Impossible (?) to localise states (Reeh-Schlieder?) to before/after $\mathbf{P} \Rightarrow$ no split $\mathcal{H}=\mathcal{H}_{>\mathbf{P}} \otimes \mathcal{H}_{<\mathbf{P}}$
■ Can we do this split "approximately" and say that Hawking radtn is "approximately" pure?

■ Use ptcle basis. Ptcle concept nonlocal. Can'† localise ptcles only to future/past of \mathbf{P}. Use orthornormal set of peaked modes. Localiztn approximate because modes always have tails.
\square Find $\hat{\rho}_{\mathbf{P}}=\operatorname{Tr}_{>\mathbf{P}}\left|\mathbf{0}_{-}\right\rangle\left\langle\mathbf{0}_{-}\right|$. Calculate $\mathbf{S}_{\mathbf{P}}=-\operatorname{Tr} \hat{\rho}_{\mathbf{P}} \ln \hat{\rho}_{\mathbf{P}}$.
■ Is $\mathbf{S}_{\mathbf{P}}$ "approx" zero? How fast does $\left.\mathbf{S}_{\mathbf{Q}}\right|_{\mathbf{Q} \rightarrow \mathbf{P}}$ decrease? (Depends on how peaked the modes are. Ones in use have very long tails. Can we do better?) Imp to know vis a vis remnants.

Asymptotic Analysis near \mathcal{I}_{R}^{+}:

■ Knowledge of underlying quantum state of CGHS system + MFA eqns near $\mathcal{I}_{\mathbf{R}}^{+}$dictate the response of asympt geometry to energy flux at $\mathcal{I}_{\mathbf{R}}^{+}$.
■ But where is $\mathcal{I}_{\mathbf{R}}^{+}$located?

- want MFA soln = classical soln at early times i.e., at $\mathcal{I}_{\mathbf{L}}^{-}, \mathcal{I}_{\mathbf{R}}^{-}$ and early on $\mathcal{I}_{\mathbf{R}}^{+}$
$-\left.\mathcal{I}_{\mathbf{L}, \mathbf{R}}^{-}\right|_{\text {class }}=\left.\mathcal{I}_{\mathbf{L}, \mathbf{R}}^{-}\right|_{\eta_{\mathrm{ab}}},\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\text {class }} ^{\text {early }}=\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\eta_{\text {ab }}} ^{\text {early }}$,
$\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\mathrm{MFA}}=$ null line
$\left.\Rightarrow \mathcal{I}_{\mathbf{R}}^{+}\right|_{\mathrm{MFA}} ^{\text {early }}=\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\eta_{\mathrm{ab}}} ^{\text {early }}\left(\right.$ along $\left.\mathbf{z}^{+}=+\infty\right)$

■ Analysis of eqns implies (almost) uniquely:

- If Hawking flux smoothly vanishes along $\mathcal{I}_{\mathbf{R}}^{+}$then $\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\text {MFA }}$ is exactly as long as $\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\text {rab }}$
- |0-> is a normalized pure state in Hilbert space of freely falling observers (for $g_{a b}$) at $\mathcal{I}_{\mathbf{R}}^{+} \Rightarrow \mathbf{N O}$ INFO LOSS.

In Detail

- Ansatz for $\boldsymbol{\Phi}, \boldsymbol{\Theta}$ consistent with asymp flatness near $\mathcal{I}_{\mathbf{R}}^{+}$
$■$ Eqns constrain fnal dependence of Ansatz. Left with 1 eqn relating 2 functions $\mathbf{y}^{-}\left(\mathbf{z}^{-}\right), \beta\left(\mathbf{z}^{-}\right)$
■ $\left(\mathbf{y}^{-}, \mathbf{z}^{+}\right)$are asymp inertial null coordinates, $\mathrm{ds}^{2}{ }_{\mathrm{MF}} \rightarrow-\mathrm{dy}^{-} \mathrm{dz}^{+} \Rightarrow \mathbf{y}^{-} \rightarrow \infty \equiv$ complete $\mathcal{I}_{\mathbf{R}}^{+}$
$\left.\square \mathrm{ds}^{2}\right|_{\mathrm{MF}}=-\frac{\mathrm{dy}^{-} \mathrm{dz}^{+}}{1+\beta \mathrm{e}^{-\kappa y^{-}} \mathrm{e}^{-\kappa \mathbf{z}^{+}}}$near $\mathcal{I}_{\mathbf{R}}^{+}$
$■$ Eqn relates β to $\left\langle\mathbf{T}_{\mathbf{y}^{-} \mathbf{y}^{-}}\right\rangle$. Since state is vacuum wrto \mathbf{z}^{-}, can show that

$$
\left\langle\mathbf{T}_{\mathbf{y}^{-}} \mathbf{y}^{-}\right\rangle=\frac{\mathrm{hG}}{48}\left(\left(\frac{\mathrm{y}^{-\prime \prime}}{\mathrm{y}^{-12}}\right)^{2}+\mathbf{2}\left(\frac{\mathrm{y}^{-\prime \prime}}{\mathrm{y}^{-12}}\right)^{\prime}\right) .
$$

- Reinterpret eqn as balance eqn for Bondi mass $\frac{\mathrm{dBondi}}{\mathrm{dy}}{ }^{-}=-\frac{\mathrm{hG}}{48}\left(\frac{\mathrm{y}^{-\prime \prime}}{\mathbf{y}^{-12}}\right)^{2}$, Bondi determined by β, y^{-}.
■ Bondi stops decreasing $\Rightarrow \mathbf{y}^{-}=\mathbf{C z}^{-}$so $\mathcal{I}_{\mathbf{R}}^{+}$coincides with $\left.\mathcal{I}_{\mathbf{R}}^{+}\right|_{\eta_{\mathrm{ab}}},\left\langle\mathbf{T}_{\mathbf{y}^{-} \mathbf{y}^{-}}\right\rangle$vanishes, $\left|\mathbf{0}_{-}\right\rangle$is pure state in \mathbf{y}^{-}Hillbert space.

