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Standard Picture:

B BH radiates at kTy = $F mpc?.

W More it radiates, the hotter it gets. But temp small for large
black holes. M =Solar mass, Ty ~ 1071°°K

B SO evaporation very slow till M ~ mp. Quasistatic process.

B Endpt = mp + Hawking Radiation. Initial matfter = pure
quantum state = INFO LOSS.
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AB Paradigm:
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B A guantum extension of classical sptime opens up beyond
singularity.

B Info recovered thru correlations of Hawking Radiation with
matter on “other side of singularity”
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CGHS Model:

S = S(gab, ¢) —1 [d2x,/8g?P V.V f
B Coupling constants:[G] = M~ L~1 [x] = L1

m2d: g*P = Qn2P, n — —(dt)? + (dz)?, null coordinates:
t—t+z
B Equations of Mofion:
0,0 f=0=Ff=1F(z")+f_(z_)

B Remaining egns can be solved for the meftric and dilaton in
terms of sfress energy of f. Thus, tfrue degrees of freedom

=f.(z"),f(z7)
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BH solution:

BH SPTIME

B QFT on CS calculation a’la Hawking (Giddings, Nelson) yields
Hawking radiation at Z; with kTy = «h indep of mass.

B Remark: BH Sptime occupies only part of (z*,z~) plane.
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4 FULL QUANTUM THEORY:
=y

MO, 0 f=0:f=Ff (z7)+f_(z)
f = free scalar field on 7,p.
Fock repn:F+ x F—.
Arena for Quantum Theory is entire Minkowskian Plane

B Note: F+ x F~ is Hiloert space for gravity-dilaton-matter
system, not only for matter.

B Dilaton, Metric are operators on this Hilboert space and satisfy
(at the moment, formal) operator egns relating them to Tap.

B Open Issue: QFT on Quantum sptime, T, = Tap(Q)

B Despite this, framework itself allows an analysis of Info Loss
Problem.
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T

B Info Loss Issue Phrased in Full Quantum Theory Terms:

- Choose "quanfum black hole” state |f) x |0_) - analog of
classicaldata f =f,(z7),f_ =0

- Info loss issue takes the form: What happens to |0_) part of
the state during BH evaporation?
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B

We shall extract physics from the operator equations using
different approximations/Ansatz:

B Trial Solution fo the Operator egns using 1,1 o define stress
energy operator

B Mean Field approximation (analog of semiclassical gravity)
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Trial Solution fo Oprfr EQns:

B Use 1, to define Tap.Then T, _ = 0, can solve oprir
equations explicitly

[] EXp value <Q> = Qclassical

m On singularity () = 0 but € still well defined as operator.
Large fluctuations of  near classical singularity

m () well defined on whole
Minkowskian plane, even “above” singularity: Quantum
Extension of Classical Spacetime.

Quantum Gravity and the information loss problem - p. 9



T —

%cmss reat
g2k <ayye

B Hawking Effect: Quantum State of gravity-dilaton-matter
system |[f,) x [0_). |0_) inferpreted by asymptotic inerfial
observers in expectation-value- geometry at 7%
Hawking radiation!

classical as

B But: No backreaction of this radtn

Quantum Gravity and the information loss problem - p. 10



Mean Field Approximation:

B Take exp value of oprir equafions w.r.fo |fy) x |0_).
B Neglect fluctuations of gravity-dilaton but not of matter

B Get exact analog of “semiclassical gravity” 4d egns,
"Gab = 87G(Tap)”.

A

B Here (T,,) ~ classical +0(h) (geomefry)
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Mean Field Numerical Soln:

MF egns for CGHS studied numerically by Piran-Strominger-Lowe,
analytically by Susskind-Thorlacius:
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Asymptotic Analysis near I;:

B Knowledge of underlying quantum state of CGHS system +
MFA egns near Ig dictate the response of asympt geometry
to energy flux at Z;.

B Analysis of egns implies (almost) uniquely:

- If Hawking flux smoothly vanishes along Zg then Z¢ |mra is
exactly as long as Zg ...,

- |0—) is a normalized pure state in Hilbert space of freely
falling observers (for ga1,) at Zg

= NO INFO LOSS.

Quantum Gravity and the information loss problem - p. 13



4 FINAL PICTURE:
=y

ASYMPT
ANALYSIS

M Interior fo past of MFA singularity: MFA numerics.
B Near 7 : Asymptotic Analysis

B Conceptual underpinnings provided by oprir equations
suggest:
- singularity resolution
- extension of classical sptime
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B

B |0_) is pure state populated with particles in Hilbert space of
asymp olbservers

B Information emerges in correlations between ptcles emitted
at early and late times

B Open issue: How fast does the information come out? What
exactly is information in QFT?
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SUMMARY:

Non-pert quantization + MFA numerics + asympt analysis point to
unitary pic of BH evaporation with key features:

B Singularity Resolution.
H Extension of Classical Sptime.

B No such thing as classically empty sptime.

NOTE: MFA requires large N, can be taken care of.

CGHS wrk in collaboration with Abhay Ashtekar and Victor
Taveras.

HAPPY BIRTHDAY ABHAY!!
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INFO LOSS PROBLEM.:

ASYMPTOTIC
ANALYSIS

B |0_) is pure state in Hilbert space of asymp observers

H Intuitively "nothing emmitted after P”, "All info emerges
pbefore P in Hawking radtn”,

= |¥) = |vac)-p ® |purestate)_p.
NOT TRUE! (f(P1)f(Po)) # 0 - Correlations!

Quantum Gravity and the information loss problem - p. 17



B

B \Where does intuition go wrong”?
Impossible (?) to localise states (Reeh-Schlieder?)to
before/affer P = no split H = H-ap @ Hep

B Can we do this split "approximately” and say that Hawking
radtn is “approximately” pure?

B Use ptcle basis. Ptcle concept nonlocal. Can’t localise
ptcles only to future/past of P. Use orthornormal set of
peaked modes. Locdliztn approximate because modes
always have tails.

HFind ﬁp = T‘I‘>P’O_><O_‘. Calculate Sp = —T‘I‘ﬁp In ﬁp.

B [s Sp "approx” zero? How fast does Sq|q_p decrease?
(Depends on how peaked the modes are.Ones in use have
very long tails. Can we do better?) Imp to know vis a vis
remnants.
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Asymptotic Analysis near I;:

B Knowledge of underlying quantum state of CGHS system +
MFA egns near Ig dictate the response of asympt geometry
to energy flux at Z;.

W Buf where is Zf; located ?

- want MFA soln = classical soln at early fimes i.e., at Z; , T
and early on Zg

o - 1
Lrldass = 7 glnan - Tk lctnss = Zaelin

Z¢ Imra = null line

early

= T e = Ift‘%iily (along z* = +00)
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B

B Analysis of egns implies (almost) uniguely:

- If Hawking flux smoothly vanishes along Zg then Z¢ |mra is
exactly as long as Zg ...,

- |0—) is a normalized pure state in Hilbert space of freely
falling observers (for g.;) at Z{; = NO INFO LOSS.
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{ In Defall
o

B Ansafz for ®, © consistent with asymp flatness near Zg

B Egns constrain fnal dependence of Ansatfz. Left with T egn
relating 2 functions y=(z7), 8(z7)

W (y—,z") are asymp inertial null coordinates,
ds?|mr — —dy dz™ =y~ — oo = complete I

dy dz™"
B ds?|vr = — 5T near 7

W Egn relates g fo (T,,-,-). Since stafe is vacuum wrto z—, can
show that

(Ty-y-) = BE ()2 + 2(L)).

H Reinferpret egn as balance egn for Bondi mass

dBondi _ _h&(Y_)2, Bondi determined by 3,y

B Bondi stops decreasing = y~ = Cz~ 50 Z;; coincides with
Tt | - (Ty—-y—) vanishes, |0_) is pure state in y ~ Hilbert space.
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