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Background and Motivation

Hierarchical Structure Formation

Little observational data of z ~ 5 - 20 era 

Gravitational waves to the rescue!

Massive BH mergers trace mergers of halos/galaxies

Observable for redshifts where there is currently little 
observational data

Problem: Estimates of merger rates span 5 - 6 orders of 
magnitude
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Goals

Develop semi-analytical, phenomenological model of MBH 
mergers, with several representative parameters.

Use statistical methods to generate synthetic LISA observable 
data (total BH mass, redshifts, merger event rates).

Blindly analyze data to evaluate confidence regions of 
parameters.
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Method

Assume halo number densities at redshift z+dz given by Sheth & 
Tormen (1999) modification of Press-Schechter (1974) algorithm. 

Probability of merger by redshift z given by Extended Press-
Schechter (Lacey & Cole 1993).

Note that this is single-step only; we do not construct a full 
merger tree!

Generation of synthetic data (masses, redshifts, merger rates).

MCMC to constrain model parameters given the data; confidence 
regions.
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Four model parameters:

min halo mass:

power law:

z-dependence:

sigma:

Calculate the likelihood of the data given the model parameters, 
thus establishing confidence regions.

Tests and Results
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1, M > Mmin

(

M

Mmin

)p

, M < Mmin

Pocc(M, z = 20) ={
MBH,0 = [MBH(Mhalo)] (1 + z)n

P (log(MBH)) ∝ e
(log(MBH)−log(MBH,0))

2/2σ2



Tests and Results
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169 merger events (3 yrs observation)

Actual values:    log10(Mmin) = 8.5         power law = 1.5
                z-dependence = 0.5    sigma = 0.2 



Tests and Results

But what if measurements aren't perfect?

We simulated the effects of observational uncertainty by 
adding errors to the synthetic data.

Biased errors - uniformly distributed between 0% and 40%

Unbiased errors - uniformly distributed between -20% and 
+20%

Results show that observational uncertainty does not 
significantly affect our method's ability to constrain merger 
parameters.
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Tests and Results
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245 merger events (3 yrs observation)

Actual values:    log10(Mmin) = 9.3
                       power law = 1.0
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Tests and Results
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Conclusions

Results show that our proof of principle works.

Note that the method works for other kinds of 
observational data, not just gravitational waves.

Many aspects of our analysis are robust against observational 
errors.

To do: include more physically-driven parameters.
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