Strongly Hyperbolic Extensions of the ADM Hamiltonian

David Brown North Carolina State University

EGM May 2008 General Relativity, as a mathematical theory, is more than just a collection of PDE's.

General Relativity, as a mathematical theory, is more than just a collection of PDE's.

General relativity is derived from a variational principle:

$$S = \int d^4x \sqrt{-g} \mathcal{R}$$

and has a Hamiltonian formulation:

$$H = \int d^3x \left\{ \alpha \mathcal{H} + \beta^a \mathcal{M}_a \right\}$$

The action and Hamiltonian

- shape the way we think about the theory
- lead to physical/mathematical insights
- serve as foundations for analytical and computational techniques.

Current formulations of the evolution equations used for numerical relativity (BSSN, KST, NOR,...) have lost the variational and Hamiltonian structures.

Current formulations of the evolution equations used for numerical relativity (BSSN, KST, NOR,...) have lost the variational and Hamiltonian structures.

Goal: Extend the ADM action/Hamiltonian in a way that is suitable for numerical calculations.

Key requirements for numerical relativity:

- Gauge conditions are best determined by evolution equations for the lapse and shift.
- Evolution equations must be (at least) strongly hyperbolic.

(ADM with prescribed lapse and shift is weakly hyperbolic.)

Key requirements for numerical relativity:

- Gauge conditions are best determined by evolution equations for the lapse and shift.
- Evolution equations must be (at least) strongly hyperbolic.

(ADM with prescribed lapse and shift is weakly hyperbolic.)

Goal: Extend the ADM action/Hamiltonian in a way that

- Lagrange's/Hamilton's equations include evolution equations for the lapse and shift.
- Lagrange's/Hamilton's equations are (at least) strongly hyperbolic

How To

ADM action:

$$S = \int dt \int d^3x \left\{ P^{ab} \dot{g}_{ab} - lpha \mathcal{H} - eta^a \mathcal{M}_a
ight\}$$

Define momenta conjugate to lapse and shift:

$$\pi \equiv \frac{\partial \mathcal{L}}{\partial \dot{\alpha}} = 0$$
$$\rho_a \equiv \frac{\partial \mathcal{L}}{\partial \dot{\beta}^a} = 0$$

This leads to constraints $\pi = 0$ and $\rho_a = 0$.

Introduce undetermined multipliers Λ and Ω^a . The action becomes:

$$S = \int dt \int d^3x \left\{ P^{ab} \dot{g}_{ab} + \pi \dot{lpha} +
ho_a \dot{eta}^a - lpha \mathcal{H} - eta^a \mathcal{M}_a - \Lambda \pi - \Omega^a
ho_a
ight\}$$

Key observation: The variational principle is unchanged if we allow Λ and Ω^a to depend on the canonical variables:

$$egin{array}{ccc} \Lambda &
ightarrow & \Lambda + \hat{\Lambda} \ \Omega^a &
ightarrow & \Omega^a + \hat{\Omega}^a \end{array}$$

 $\hat{\Lambda}$ and $\hat{\Omega}^a$ are linear functions of p, $\partial_a q$, and 1 with coefficients that depend on the q's.

The extended theory is described by the action:

$$S = \int dt \int d^{3}x \Big\{ P^{ab} \dot{g}_{ab} + \pi \dot{\alpha} + \rho_{a} \dot{\beta}^{a} - \alpha \mathcal{H} - \beta^{a} \mathcal{M}_{a} \\ - (\Lambda + \hat{\Lambda})\pi - (\Omega^{a} + \hat{\Omega}^{a})\rho_{a} \Big\}$$

or equivalently by the Hamiltonian

$$H = \int d^3x \left\{ \alpha \mathcal{H} + \beta^a \mathcal{M}_a + (\Lambda + \hat{\Lambda})\pi + (\Omega^a + \hat{\Omega}^a)\rho_a \right\}$$

with first class constraints:

$$\begin{array}{rcl} \pi & = & 0 \\ \rho_a & = & 0 \\ \mathcal{H} & = & 0 \\ \mathcal{M}_a & = & 0 \end{array}$$

Evolution equations of motion:

$$\dot{g}_{ab} = (\text{usual ADM}) + \frac{\partial \hat{\Lambda}}{\partial P^{ab}} \pi + \frac{\partial \hat{\Omega}^{c}}{\partial P^{ab}} \rho_{c}$$

$$\dot{P}^{ab} = (\text{usual ADM}) - \frac{\partial \hat{\Lambda}}{\partial g_{ab}} \pi - \frac{\partial \hat{\Omega}^{c}}{\partial g_{ab}} \rho_{c}$$

$$+ \partial_{d} \left(\frac{\partial \hat{\Lambda}}{\partial (\partial dg_{ab})} \pi \right) + \partial_{d} \left(\frac{\partial \hat{\Omega}^{c}}{\partial (\partial dg_{ab})} \rho_{c} \right)$$

$$\dot{\alpha} = \Lambda + \hat{\Lambda} + \frac{\partial \hat{\Lambda}}{\partial \pi} \pi + \frac{\partial \hat{\Omega}^{c}}{\partial \pi} \rho_{c}$$

$$\dot{\beta}^{a} = \Omega^{a} + \hat{\Omega}^{a} + \frac{\partial \hat{\Lambda}}{\partial \rho_{a}} \pi + \frac{\partial \hat{\Omega}^{c}}{\partial \rho_{a}} \rho_{c}$$

$$\dot{\pi} = \dots$$

$$\dot{\rho}_{a} = \dots$$

Example:

$$\hat{\Lambda} = (\dot{\tilde{\alpha}}/\tilde{\alpha})\alpha + \beta^{a}D_{a}\alpha - \frac{\alpha^{2}}{2\sqrt{g}}P + \frac{\alpha^{3}}{8\sqrt{g}}\pi$$
$$\hat{\Omega}^{a} = (\dot{\tilde{\alpha}}/\tilde{\alpha})\beta^{a} + \beta^{b}\tilde{D}_{b}\beta^{a} + \alpha^{2}(\Gamma_{bc}^{a} - \tilde{\Gamma}_{bc}^{a})g^{bc}$$
$$-\alpha D^{a}\alpha - \frac{\alpha^{3}}{2\sqrt{g}}\rho^{a}$$

where $\tilde{\alpha}$ and $\tilde{\Gamma}^{a}_{bc}$ are functions of the spacetime coordinates (their transformation properties insure spatial covariance and time reparametrization invariance)

Example:

$$\hat{\Lambda} = (\dot{\tilde{\alpha}}/\tilde{\alpha})\alpha + \beta^{a}D_{a}\alpha - \frac{\alpha^{2}}{2\sqrt{g}}P + \frac{\alpha^{3}}{8\sqrt{g}}\pi$$
$$\hat{\Omega}^{a} = (\dot{\tilde{\alpha}}/\tilde{\alpha})\beta^{a} + \beta^{b}\tilde{D}_{b}\beta^{a} + \alpha^{2}(\Gamma^{a}_{bc} - \tilde{\Gamma}^{a}_{bc})g^{bc}$$
$$-\alpha D^{a}\alpha - \frac{\alpha^{3}}{2\sqrt{g}}\rho^{a}$$

where $\tilde{\alpha}$ and $\tilde{\Gamma}^{a}_{bc}$ are functions of the spacetime coordinates (their transformation properties insure spatial covariance and time reparametrization invariance)

The equations of motion for g_{ab} , α , β^a , etc are:

strongly hyperbolic with physical characteristics

Example:

$$\hat{\Lambda} = (\dot{\tilde{\alpha}}/\tilde{\alpha})\alpha + \beta^{a}D_{a}\alpha - \frac{\alpha^{2}}{2\sqrt{g}}P + \frac{\alpha^{3}}{8\sqrt{g}}\pi$$
$$\hat{\Omega}^{a} = (\dot{\tilde{\alpha}}/\tilde{\alpha})\beta^{a} + \beta^{b}\tilde{D}_{b}\beta^{a} + \alpha^{2}(\Gamma_{bc}^{a} - \tilde{\Gamma}_{bc}^{a})g^{bc}$$
$$-\alpha D^{a}\alpha - \frac{\alpha^{3}}{2\sqrt{g}}\rho^{a}$$

where $\tilde{\alpha}$ and $\tilde{\Gamma}^{a}_{bc}$ are functions of the spacetime coordinates (their transformation properties insure spatial covariance and time reparametrization invariance)

The equations of motion for g_{ab} , α , β^a , etc are:

- strongly hyperbolic with physical characteristics
- equivalent in their principal parts to a 3+1 splitting of the generalized harmonic equations

Conclusion:

The procedure outlined here allows one to

- introduce dynamical gauge conditions for the lapse and shift
- change the level of hyperbolicity of the evolution system while maintaining the variational and Hamiltonian structures of the theory.

Details: arXiv:0803.0334 [gr-qc]