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General Relativity, as a mathematical theory, is more than just a
collection of PDE’s.

General relativity is derived from a variational principle:

S =

∫
d4x
√
−gR

and has a Hamiltonian formulation:

H =

∫
d3x {αH+ βaMa}

The action and Hamiltonian

I shape the way we think about the theory

I lead to physical/mathematical insights

I serve as foundations for analytical and computational
techniques.
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Current formulations of the evolution equations used for numerical
relativity (BSSN, KST, NOR,...) have lost the variational and
Hamiltonian structures.

Goal: Extend the ADM action/Hamiltonian in a way that is
suitable for numerical calculations.
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Key requirements for numerical relativity:

I Gauge conditions are best determined by evolution equations
for the lapse and shift.

I Evolution equations must be (at least) strongly hyperbolic.

(ADM with prescribed lapse and shift is weakly hyperbolic.)

Goal: Extend the ADM action/Hamiltonian in a way that

I Lagrange’s/Hamilton’s equations include evolution equations
for the lapse and shift.

I Lagrange’s/Hamilton’s equations are (at least) strongly
hyperbolic
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How To
ADM action:

S =

∫
dt

∫
d3x

{
Pabġab − αH− βaMa

}
Define momenta conjugate to lapse and shift:

π ≡ ∂L
∂α̇

= 0

ρa ≡ ∂L
∂β̇a

= 0

This leads to constraints π = 0 and ρa = 0.



Introduce undetermined multipliers Λ and Ωa. The action becomes:

S =

∫
dt

∫
d3x

{
Pabġab + πα̇ + ρaβ̇

a − αH− βaMa − Λπ − Ωaρa

}

Key observation: The variational principle is unchanged if we allow
Λ and Ωa to depend on the canonical variables:

Λ → Λ + Λ̂

Ωa → Ωa + Ω̂a

Λ̂ and Ω̂a are linear functions of p, ∂aq, and 1 with coefficients
that depend on the q’s.



The extended theory is described by the action:

S =

∫
dt

∫
d3x

{
Pabġab + πα̇ + ρaβ̇

a − αH− βaMa

−(Λ + Λ̂)π − (Ωa + Ω̂a)ρa

}
or equivalently by the Hamiltonian

H =

∫
d3x

{
αH+ βaMa + (Λ + Λ̂)π + (Ωa + Ω̂a)ρa

}
with first class constraints:

π = 0

ρa = 0

H = 0

Ma = 0



Evolution equations of motion:

ġab = (usual ADM) +
∂Λ̂

∂Pab
π +

∂Ω̂c

∂Pab
ρc

Ṗab = (usual ADM)− ∂Λ̂

∂gab
π − ∂Ω̂c

∂gab
ρc

+∂d

(
∂Λ̂

∂(∂dgab)
π

)
+ ∂d

(
∂Ω̂c

∂(∂dgab)
ρc

)

α̇ = Λ + Λ̂ +
∂Λ̂

∂π
π +

∂Ω̂c

∂π
ρc

β̇a = Ωa + Ω̂a +
∂Λ̂

∂ρa
π +

∂Ω̂c

∂ρa
ρc

π̇ = . . .

ρ̇a = . . .



Example:

Λ̂ = ( ˙̃α/α̃)α + βaDaα−
α2

2
√

g
P +

α3

8
√

g
π

Ω̂a = ( ˙̃α/α̃)βa + βbD̃bβ
a + α2(Γa

bc − Γ̃a
bc)gbc

−αDaα− α3

2
√

g
ρa

where α̃ and Γ̃a
bc are functions of the spacetime coordinates (their

transformation properties insure spatial covariance and time
reparametrization invariance)

The equations of motion for gab, α, βa, etc are:

I strongly hyperbolic with physical characteristics

I equivalent in their principal parts to a 3+1 splitting of the
generalized harmonic equations
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Conclusion:

The procedure outlined here allows one to

I introduce dynamical gauge conditions for the lapse and shift

I change the level of hyperbolicity of the evolution system

while maintaining the variational and Hamiltonian structures of the
theory.

Details: arXiv:0803.0334 [gr-qc]


