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Abstract

• String theory has provided a precise quantum description of certain

supersymmetric black holes, one of which is the Breckenride-Myers-

Peet-Vafa (BMPV) black hole.

• We use a string theoretical object called a supertube to probe the

black hole.

• We determine under what circumstances a supertube with three

charges can merge with the black hole and find evidence that the

merger can cause fragmentation of the black hole.

• Thus we extend and generalize the investigations have been per-

formed with the two-charge supertube.
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String Theory

lS

[Sagnotti and Sevrin [hep-ex/0209011]

• String theory describes elementary particles, including the gravi-

ton, as quantum states of one dimensional strings instead of zero-

dimensional point particles.
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D-branes

l

[Sagnotti and Sevrin, hep-ex/0209011]

• In string theory there are both open strings and closed strings

(loops of string). Open strings end on objects called D-branes.
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Supertubes
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[Mateos, Ng and Townsend, hep-th/0112054]

• Supertubes are tubular D-brane configurations.

• There are static E- and B- fields on their worldvolumes that pro-

duce angular momentum, which stabilizes them against collapse.
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D6 brane Supertube (Bena-Kraus construction)

• The supertube is comprised of k coincident D6-branes, wrapped

on T4 × S1
z = T5, where k is an even integer.

• By construction, the supertube carries net D0, D4, and F1 charge

{qD0, qD4, qF1}, but no D2 charge.

• (10 − 5) dim. → effectively a five-dimensional scenario.
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Rotating Black Holes in 4+1 Dimensions

• In D=4+1 there are [(D-1)/2]=2 independent planes of rotation

→ two independent angular momenta J1 and J2.

• If J1 = J2 the spacetime can still carry net angular momentum

even if the black hole event horizon is nonrotating!
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Lift of BMPV Black Hole to IIA Supergravity
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• The angular momenta J1 = J2 ≡ J of the BH satisfy

J2 ≤ ND0ND4NF1

where the Ni’s represent the integer-valued charges of the BH.
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Dirac-Born-Infeld (DBI) Action

• Low energy effective action for a D-brane

• It assumes a fixed background, which is the most straightforward

method to describe moving supertubes.

S =
∫

L dt =
∫
L d7x =

∫
(LDBI + LWZ) d7x

= −τD6

∫
d7x e−Φ

√
−det(gab + bab + Fab)

+ τD6 gs

∫ ∑
7−forms

c(m) ∧ e(F+b)(2)
.

• gab = gµν
∂xµ

∂ya
∂xν

∂yb , bab = bµν
∂xµ

∂ya
∂xν

∂yb , c
(1)
a = C

(1)
µ

∂xµ

∂ya , etc.
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Static Supertube Configurations

• In a supersymmetric configuration the supertube charges and black

hole charges have the same signs, and the repulsion of the like

charges exactly cancels the gravitational attraction.

• This is a configuration of minimum energy, called a Bogolmol’nyi-

Prasad-Sommerfield (BPS) configuration.
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Critical Angular Momentum

• The three-charge supertube, when in the vicinity of the BMPV

black hole, has a critical value of the angular momentum:

jcrit = ND0 +
qD0

qD4
ND4.
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Static Configuration Locations
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Moving Supertubes

• When a supertube moves with respect to the black hole, the del-

icate cancellation of forces is spoiled. There is now an excess of

energy ∆E over the minimum EBPS,

E = EBPS + ∆E

= 2πRz τF1 qF1 + τD0 qD0 + VT4 τD4 qD4 + ∆E.

• This can be used to obtain an effective potential V(r, θ).
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Effective Potential

• We use the coordinates r, θ, φ1, φ2. Eliminating ṙ and θ̇ for con-

served quantities gives an effective potential V(r, θ) for 0 < θ < π
2.

V(r, θ) = ∆E|ṙ=0,θ̇=0

=
τD6V6 k Fzσr2

2r2(HD0 + B2
0HD4)

×
1

(F2
zσHF1r2 + HD0HD4 r4 sin2 θ − 2ωFzσ sin2 θ)

×

[j1/(τD6V6)− (HD0 + B2
0HD4) r2 sin2 θ]2

sin2 θ

+
[j2/(τD6V6)− (QD0 + B2

0QD4) sin2 θ]2

cos2 θ

.
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Motion in the plane θ = π
2
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• There is a special set of purely radial trajectories along θ = π
2
. In this case the

center of mass of the supertube stays motionless (centered on the black hole)
while the radius changes. The potential V(r) is

V(r) = ∆E|ṙ=0, θ̇=0, θ=π

2

= τD6V6 k
Fzσ r2 [j1/(τD6V6)− (HD0 + B2

0HD4) r2]2

2r2(HD0 + B2
0HD4) (F 2

zσHF1r2 + HD0HD4 r4 − 2ωFzσ)
.
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Motion in the plane θ = π
2
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• When j1 ≤ jcrit there is no potential barrier.

• When j1 > jcrit there is a potential barrier and local potential

minimum.
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BMPV Angular Momentum Bound

• The angular momenta J1 = J2 ≡ J of the BH satisfy

J2 ≤ ND0ND4NF1.

• Now, supertubes also have charges and angular momenta.

Thus we can attempt to violate this bound by dropping supertubes

of appropriate charge and orientation into the BH.
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Attempting to Violate the Angular Momentum
Bound

• If the BH angular momentum is slightly below the maximum value,

i.e.

J ≈
√

ND0ND4NF1

we can add two identical supertubes to the BH (one along each

axis so that J ′1 = J ′2) and see if doing so violates the angular

momentum bound.
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Attempting to Violate the Angular Momentum
Bound

• If there is no potential barrier present, no overspin occurs.

• If there is a potential barrier present, overspin can formally occur

if j1 > 4jcrit

...but the resulting object is no longer a BMPV black hole!
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Post-Merger State: Fragmentation of the Black
Hole?

[Elvang, Emparan, Mateos and Reall, hep-th/0408120]

• The true nature of the final bound state of BH + supertubes has

yet to be determined.

• Marolf and Virmani (2005) have argued that it is a fragmentation

into several black objects; the most natural candidate seems to be

a concentric black hole/black ring configuration.
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Entropy Considerations

SBMPV = 2π
√

ND0ND4NF1 − J2

• If, post-merger, we have

N ′
D0N ′

D4N ′
F1 − J

′ 2 < ND0ND4NF1 − J2,

then the GSL implies that the result cannot be a black hole.
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Entropy Considerations

• Since the condition

N ′
D0N ′

D4N ′
F1 − J

′ 2 < ND0ND4NF1 − J2

is necessary but not sufficient for an overspin, we see that frag-

mentation can occur even without an overspin, i.e. under circum-

stances more general than realized previously.

• A similar argument applies to the two-charge supertube, thus gen-

eralizing that analysis as well.
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Possible Future Directions

• A configuration of a black ring surrounding a black hole, called

‘black Saturn’ has recently gained attention. It appears to be one

of the most stable black objects for a given mass and angular

momentum, as phase diagrams for five dimensional black holes

indicate (Elvang et. al. 2007).

• If charged versions of black Saturn are found, perhaps some of

them will be supersymmetric. If so they would be natural candi-

dates for endpoints of supertube/BMPV mergers.
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