Last stages of spectral evolution via turducken method

Enrique Pazos
Advisor: Manuel Tiglio
Louisiana State University/University of Maryland
11th East Coast Gravity Meeting
Penn State May/2008

Definition

- Turducken: is a dish consisting of a partially de-boned turkey stuffed with a de-boned duck, which itself is stuffed with a small de-boned chicken. (Wikipedia)

Definition

- Turducken: is a dish consisting of a partially de-boned turkey stuffed with a de-boned duck, which itself is stuffed with a small de-boned chicken. (Wikipedia)

turkey duck chicken

Definition

- Turducken: is a dish consisting of a partially de-boned turkey stuffed with a de-boned duck, which itself is stuffed with a small de-boned chicken. (Wikipedia)

turkey duck chicken

- Relativistic turducken: to stuff a black hole.

The idea

- "If no physical information can leave the interior of the black hole, why not just change the interior to one's advantage?"

Brown et al. Phys. Rev. D 76, 081503(R) (2007)

The idea

- "If no physical information can leave the interior of the black hole, why not just change the interior to one's advantage?"
- Constraint violations do not propagate outside the black hole, provided the system is hyperbolic and all characteristics speeds are less than or equal to one.

Brown et al. Phys. Rev. D 76, 081503(R) (2007)

The recipe

How to stuff a black hole? The smoother the better.

The recipe

How to stuff a black hole? The smoother the better. 1D analogy for continuous 2nd derivatives

- 6 conditions: $f(x), f^{\prime}(x)$,

$$
f^{\prime \prime}(x) \text { at } x=a, b
$$

- $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+$ $c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}$
- $f(x)$ is solution of

$$
\frac{d^{6} f}{d x^{6}}=0
$$

The recipe

How to stuff a black hole? The smoother the better.

3D version

$$
\left(\partial_{x}^{6}+\partial_{y}^{6}+\partial_{z}^{6}\right) \Phi=0
$$

$\Phi=$ lapse, shift, metric, extrinsic curvature

The stuffing

$$
K x x \operatorname{lev} 8 d x=0.033 t=0
$$

The stuffing

$K x x \operatorname{lev} 8 d x=0.033 t=0$

The stuffing

$K x x \operatorname{lev} 8 d x=0.033 t=0$

Evolving stuffed Black Holes

Initial Data: Caltech-Cornell 15 orbit run at $t=7600$.
Gauge: $1+$ log, gamma-driver
Formulation: 1st order formulation of BSSN Grid: Cartesian, 9 refinement levels. $\Delta=4.2 M \rightarrow 0.0084 M$. CFL=0.4, 4th order FD.
Boundary: Outer boundary at 192M, outgoing BC

Orbits and merger

Start AH movie
 Start lapse movie

Conclusion and further work

- The relativistic turducken provides a stable approach to Binary Black Hole evolutions.
- Functionality of excision with a topologically trivial domain.
- Exploration of different mass, spin and spin orientation.

