## Towards Scale-invariant cyclic universes

## Tirthabir Biswas



## IGC, Penn State University, USA

arXiv:0801.1315 [hep-th]
arXiv:0707.4679 [hep-th] with S Alexander \& R Brandenberger

## Standard Model of Cosmology

$$
d s^{2}=a^{2}(\tau)\left[-(1+\Phi(\tau, x)) d \tau^{2}+(1-\Phi(\tau, x)) d x^{2}\right]
$$

Key ingredients
$k^{3} P_{\Phi}(k) \approx$ const
> GR+Homogeneous Isotropic cosmology+ Perturbations
> Inflation $\rightarrow$ Radiation $\rightarrow$ Matter(DM+baryons) $\rightarrow$ Dark Energy
Concordant $\Lambda$ CDM model






## Why do we still have our jobs?

Finally we know for sure that we almost know nothing Inflaton, Baryons, Dark Matter, Dark Energy????

## Two Attitudes

> SM is fine, try to address the hard questions
> Search for alternative Non-singular (QG) cosmology

- Cosmology is an ultimate magnifier

1. Length

$$
H_{0}^{-1} \xrightarrow{\text { radiation }} \frac{T_{0}}{T_{G U T}} H_{0}^{-1} \xrightarrow{\text { inflation }} e^{-N}\left(\frac{M_{p}^{2}}{T_{G U T} T_{0}}\right) l_{p}=e^{-(N-75)} l_{p}
$$

2. Energy density can become Plackian
3. Spatial curvature can become Planckian

- Observable Quantum Gravity Effects may be testable already (WMAP) and/or near future (Planck)

1. Spectrum
2. Gravity waves
3. Non gaussianity and non adiabaticity

## Non-singular Cosmologies

> "Effective" FLRW cosmologies a good description: LQC + BKL
, Look into the "eternal past"

$$
R \sim H^{2} \sim(\dot{a} / a)^{2}
$$




Emergent Universe


Cyclic Universe
Ellis \& Maartens '04 Einstein,Freedman,Tolman,Lemaitre, 30's
Bondi,Gold,Narlekar,Hoyle (steady state) 50's
Steinhardt \& Turok (ekpyrotic), '02
Freese et.al.; Frampton \& Baum (phantom)

## Plan of the talk

> Virtues and Challenges of cyclic cosmology
> Tracking perturbations around Bounce
> New "emergent cyclic Universe"
> Cyclic Inflation

## Challenges \& Virtues of Cyclic <br> Universes

I. Nonsingular geodesically complete Universe
> Consistent (ghostfree) Bounce

- LQC
- p-adic/SFT inspired Non-local modifications of gravity [Seigel, Mazumdar, YT]
- BCS Gap energy: [Alexander, \& YT]
- Coupling of fermions to gravity $\Rightarrow$ four fermion interaction
- $\quad$ Attractive $\Rightarrow$ negative energy required for bounce
- Gap energy $\rightarrow$ chemical potential $\rightarrow$ number density $\rightarrow$ volume
- Nontrivial volume dependence can temporarily violate DEC


## iI. Turn-around

> Spatial curvature (no Dark Energy)
> Scalars, phantom

## iiI. Classic puzzles:

> Horizon: All
> Flatness, Largeness, Entropy: Emergent cyclic models
> ? Homogeneity/Isotropy: Some aspects we will be able to address
iv. Black hole over-production \& Dark energy

Quintessence (ekpyrotic) makes BH's dilute
> Phantom makes BH's disintegrate
v. ? Generating Scale-invariant Perturbations

Scalar field fluctuations [Steinhardt et.al]
Stringy thermal fluctuations [Brandenberger et. al]
"New" ideas
vi. Tolman's Entropy or the "Super Big Bang" Problem

Thermal UV phase (Hagedorn phase) exists +
BB singularity problem is solved

## Transferring fluctuations via bounce

## Inflation Basics

$$
\sigma_{k}^{\prime \prime}+\left(k^{2}-\frac{a^{\prime \prime}}{a}\right) \sigma_{k}=0
$$

$$
\begin{aligned}
\mathrm{V}^{\prime \prime}(\Phi) & \approx 0, \\
\sigma & \equiv \frac{\phi}{a}
\end{aligned}
$$

> Sub-Hubble
$>H \ll k \Rightarrow \sigma_{k} \sim k^{-1 / 2} e^{i k \tau}$
> Super-Hubble $H \gg k / a \quad \sigma_{k} \sim A(k) a(\tau)$
> Matching at Hubble crossing

$$
H=k / a \quad \Leftrightarrow \quad k \sim 1 /|\tau| \quad \varphi_{k} \sim k^{-3 / 2}
$$


> Power Spectrum

$$
P_{\phi} \sim k^{3}\left|\varphi_{k}\right|^{2} \sim \text { const. }
$$

## Ekpyrotic

> Generates scale-invariant spectrum in the "growing mode" during contraction phase.

## Perturbations in Nonsingular Bounce

> Interested in constant mode in expanding branch ${ }^{8}$
> Mode matching ambiguities
> Physics at bounce not known/singular
> Numerical solutions tricky

## How to avoid the pit-falls?

> GR equation valid away from bounce
$\Phi_{k}^{\prime \prime}+3(1+\omega) H \Phi_{k}^{\prime}+\left[\omega k^{2}+2 H^{\prime}+(1+3 \omega) H^{2}\right] \Phi_{k}=0$


Solutions known: $\quad\left(-\infty, \tau_{p}\right) \quad \& \quad\left(\tau_{p}, \infty\right)$
Hubble Radius Physical wave length
, In super-Hubble spatial derivatives not important

- If no inflation $k_{p h} \ll \tau_{p}^{-1} \sim O\left(M_{p}\right)$
- Near bounce also like super-Hubble, even if $\mathrm{H} \rightarrow 0 \quad H^{\prime} \ll \tau_{p}^{-1}$
- Higher order spatial derivatives can also be neglected
- Perturbation eqn. only depends on time,
$\left(-\tau_{k}, \tau_{k}\right)$
- find fluctuations for scale-factor $\Leftrightarrow$ only need homogeneous isotropic cosmology
> Matching in overlapping regions

$$
\left(-\tau_{k},-\tau_{p}\right) \quad \& \quad\left(\tau_{p}, \tau_{k}\right)
$$

## An example

## Assumption

> Perturbation equation not effected by new physics
> Non-local physics changes global evolution
> Does not effect perturbations
> Casimir Energy, Gap energy
Results
> Depends on the new physics (background)
> Generally modes mix! Good news for ekpyrotic scenarios
> Modes can even switch

- Modes switch at $\omega \approx$ 5.314,
- Mixes when $\omega \gg 1$ (ekprotic limit)


## Emergent Cyclic Universe

## Tolman's Entropy Problem

> Entropy is monotonically increasing

- Universe atmost quasi-periodic

- Entropy (Energy, period) vanishes in a finite time in the past
- Beginning of time - back to square 1
> Thermal Hagedorn Phase, $\mathrm{T}=\mathrm{T}_{\mathrm{H}} \sim \mathrm{M}_{\mathrm{S}}$
- All string states in thermal equilibrium entropy constant
- Below critical temperature, massive states decouple, entropy produced.
- As cycles shrink, universe is hotter less time in entropy producing
more time in

$$
\Delta S \rightarrow 0 \quad \Rightarrow S_{n} \rightarrow S_{-\infty} \neq 0
$$

- Cycles asymptote to a periodic evolution



## Stringy Toy Model

$>$ Hagedorn half $H^{2}=\frac{1}{3}\left[\rho_{\text {hag }}-\rho_{\text {cas }}+\rho_{\text {curv }}\right]=\frac{1}{3}\left[\frac{S}{a^{3}}-\frac{\Omega_{c}}{a^{4}}-\frac{\Omega_{k}}{a^{2}}\right]$

- Eternally periodic universe

$$
a(\tau)=\frac{S-\sqrt{S^{2}-4 \Omega_{c} \Omega_{k}} \cos v \tau}{2 \Omega_{k}} \quad v \equiv \frac{T_{H}^{2}}{M_{p}} \frac{\overline{\Omega_{k}}}{3}
$$

> Non-Hagedorn half (no energy exchange)

- Hagedorn matter $=$ massless $(r)+$ massive ( $m$ )
- $S \rightarrow \Omega_{m} \& \Omega_{c} \rightarrow \Omega_{c}-\Omega_{r} \Rightarrow a_{\max } \sim \Omega_{r}$
> Gluing the two halves $\left(\Omega_{r}, \Omega_{m}, a_{\text {tran }}\right)$
- Entropy is conserved
- Matter and radiation was in equilibrium till the transition
- Phenomenological Input: $\mu \equiv \frac{\rho_{m}}{\rho_{r}} \sim 10^{-22} \ll 1$

$$
\Omega_{r} \sim S^{4 / 3} \Rightarrow a_{\max } \sim S^{2 / 3} \quad a_{\text {tran }} \sim S^{1 / 3}
$$

## Energy Exchange \& Entropy Prod Iction

> Matter coverted to radiation [Tolman,Barrow et.al.]

> Consistent with $1^{\text {st }} \& 2^{\text {nd }}$
> Conserves total
> Breaks time-reversal symmetry
> Exchange function, $\mathrm{s}(\mathrm{a}, \Omega)$
> Small cycle limit, $\mathrm{s} \sim$ const. $\quad S=S_{c r}\left[1+\frac{1}{C n^{2}}\right]$

## Crucial Difference

> Singular bounce $\Gamma$ interaction canno keep up with $H \rightarrow \infty$
> Thermal equil cannot be mantiened $\mathbf{~}$ ) entropy production during bounce
> Nonsingular bounce $\boldsymbol{H}$ is finite, a thermal Hagedorn phase can exist.

## Cyclic Inflation

## Can we mimick inflation?

> Entropy production by decay of massive particles:

$$
\left(\frac{S_{n+1}}{S_{n}}\right)=\left(\frac{S_{r}}{S_{m}}\right) \sim \frac{\rho_{r}^{3 / 4} V}{\rho_{m} V M^{-1}} \sim \frac{T_{H}}{T_{d}} \equiv \kappa
$$

- Entropy increases by a constant factor
- If decay time > Period, к smaller
- So does the scale factor!
- Energy density remains same

$$
a_{t r a n} \sim S^{1 / 3} \Rightarrow \frac{a_{n+1}}{a_{n}} \sim \kappa^{1 / 3}
$$

- Inflation over many many cycles
> Massless scalar field will see inflation on an average, if

$$
\tau H_{a v} \ll 1
$$

## More detail requirements

> With curvature turnaround $\tau$ increases
> -ve consmological constant $\sim-\lambda^{4} \Rightarrow$ $H_{a v}=\frac{\int H d t}{\int d t}=\frac{\ln \left(\frac{a_{n+1}}{a_{n}}\right)}{\tau} \Rightarrow \ln \left(\frac{a_{n+1}}{a_{n}}\right)=\frac{\ln \kappa}{3} \ll 1$
> Over many many many cycles we realize inflation

## How to exit?

> Introduce a potential

- Kinetic energy at end of contraction depends on slope:

- Total energy can go from - ve to + ve
- Can zoom past the minimum and into + ve potential region
- Can even mimick quintessence, not necessary.


## Thermal fluctuations

Spectrum ${ }_{\text {[Peebles'93, Pogosian } \& \text { Magueij] }}^{\delta_{L}^{2}}=\left.\frac{\Delta E^{2}}{E^{2}}\right|_{L}=\left(\frac{d^{2} \ln Z}{d \beta^{2}}\right) /\left(\frac{d \ln Z}{d \beta}\right)^{2}=\frac{T^{2}}{\rho^{2} L^{3}} \frac{\partial \rho}{\partial T} \sim \frac{1}{(T L)^{3}}$

- Energy fluctuation in a given volume related to Power spectrum
- White noise spectrum $\delta_{L}^{2}=\int d k k^{2} W(k L) P(k) \Rightarrow P(k)=\delta_{k}^{2}=\frac{T^{2}}{\rho^{2}} \frac{\partial \rho}{\partial T} k^{0} \rightarrow \frac{4}{g} T^{-3}$
- Thermal correlations only for sub-Hubble modes
- Hubble Crossing
- Conformal radiation leads to scale invariance

$$
\frac{k}{a} \sim H \sim \frac{T^{2}}{M_{p}} \Rightarrow k \sim T \Rightarrow P(k)=k^{-3}
$$

- $\mathrm{P}(\mathrm{k})$ transferred to gravity, $\mathrm{P}_{\mathrm{\Phi}}(\mathrm{k}) \quad \nabla^{2} \Phi \approx \delta \rho \Rightarrow k^{2} \Phi_{k}=a^{2} \rho \delta_{k} \sim a^{2} H^{2} \delta_{k}$
- Super Hubble governed by $\Phi_{k}$
> Robust and general mechanism (no fine-tuning):
- At Hubble crossing validity of GR
- Radiation domination
- Contraction so that modes leave the Hubble radius
- No mode mixing, $\Phi_{k}$ remains constant


## Amplitude

> The problem for symmetric bounce
> Consider scale which enters Hubble radius at $\mathrm{T}_{\text {eq }}(1 \mathrm{Mpc})$

$$
\delta_{L}^{2}=\frac{1}{g_{*}\left(L T_{L}\right)^{3}} \sim \frac{1}{g_{*}}\left(\frac{H_{L}}{T_{L}}\right)^{3} \sim \sqrt{g_{*}}\left(\frac{T_{L}}{M_{p}}\right)^{3} \ll 10^{-8} \rightarrow \quad T_{L} \sim 10^{13} \mathrm{Gev}
$$

> Exactly the right scenario to "amplify" perturbations

$$
\begin{aligned}
& k=T_{L}^{2} a_{L}=T_{e q}^{2} a_{e q} \quad \& \quad S \sim(T a)^{3} \sim T^{-3} \\
& \left(\frac{S_{0}}{S_{-1}}\right) \equiv \kappa=10^{67}
\end{aligned}
$$

- $a_{p}$ is increasing $\lambda_{\mathrm{ph}}$ is decreasing with cycles
$\Rightarrow$ universe has to expand more for the same mode to exit we need
> Thermal Equilibrium in Hagedorn phase [Frey et.al, Hindmarsh \& Skliros]
- Small cycles: Thermal equilibrium to be mantained

$$
\begin{array}{lc}
\Gamma_{\mathrm{int}} \sim T_{H} g_{s}^{2} n & H \sim T_{H}^{2} / M_{p} \\
T_{H} \sim 10^{-3} M_{p} & g_{s}^{2}>10^{-5}
\end{array}
$$

- Large cycles: $H \propto S^{2}$

Thermal equilibrium around bounce short lived
Near bounce large amounts of entropy produced
> Entropy Production around Bounce

- Naïve Estimate: when radiation converts to Hagedorn matter

$$
\left(\frac{S_{0}}{S_{-1}}\right)=\left(\frac{S_{H}}{S_{r}}\right) \sim \frac{\rho_{H} V T_{H}^{-1}}{\rho_{r}^{3 / 4} V} \sim \frac{\rho_{b}^{1 / 4}}{T_{H}} \sim S_{-1}
$$

- Holographic Saturation: Can't trust physics at super-Planckian energy densities Treat bounce at black box, use holographic entropy bound If saturated we get the same estimate!

$$
S_{0} \sim 10^{134} \quad \& \quad S_{-1} \sim 10^{67}
$$

$$
S \leq \text { area } \sim\left(\frac{E}{M_{p}}\right)^{2} \Rightarrow S_{0} \leq S_{-1}^{2}\left(\frac{T_{H}}{M_{p}}\right)^{2}
$$

## Dark Energy and Black Hole Problem

> Add $\Lambda \sim$ (mev) there exists a last (our) cycle! DE phase
> Previous cycles very short

- no matter domination, no LSS
- no junk (BH/inhomogeneities) from previous cycle
- thermal density fluctuation very small
> Toy Model can be extended to ekpyrotic/phantom type late cycles


## Summary

## The story so far?

> Began as string size, curved universe, in almost periodic \& almost Hagedornic phase: emerging phase
> (a) Constant cycle "inflationary" phase -> graceful exit to long lived cycle
> (b) With entropy production, Hagedorn phase becomes shorter,

- large entropy production starts
- Universe highly asymmetric and large
- Very large cycles (like ours), curvature gives way to Dark Energy


## Problems addressed

> Singularities: BBS \& super BBP
> Classic Problems: horizon, flatness, entropy, largeness
> Late time: inhomogeneity/BH overproduction \& DE
> Perturbations: spectrum and amplitude

## Needs investigation

> Initial homogeneity/isotropy, Mix master behaviour
> Hagedorn physics: Non-equilibrium dynamics, Casimir Energy, Decay rate...
> Mode mixing during Bounce? Is $\Phi$ really constant during bounce?

## Predictions/Tests

> Gravity Waves, Non-gaussianity...

## Precision Cosmology



## Cosmic Microwave Background

- We need an asymmetric bounce, the comoving scale has to exit the Hubble radius much earlier.
- This is precisely what we have via entronv nrodiıtion


## Quantum Gravity: A toy Model

## Motivation

- Stringy
- Dual Field theory action for strings on Random Lattice

$$
\hat{S}=\int d^{D} x \operatorname{tr}\left[\frac{1}{2} \phi e^{-\alpha^{\prime} \square / 2} \phi+G^{n-2} \phi^{n}\right]
$$

Linear Regge trajectories: Confinement [Grisaru, Siegel, Y.T.]

- Tachyons in open SFT and p-adic string theory has similar form
- Higher Derivative but Ghost free

$$
\begin{aligned}
& S=\int d^{4} x \phi \square\left(\square+m^{2}\right) \phi \Rightarrow \square\left(\square+m^{2}\right) \phi=0 \\
& \Delta\left(p^{2}\right)=\frac{1}{p^{2}\left(p^{2}+m n^{2}\right)} \sim \frac{1}{p^{2}}-\frac{1}{\left(p^{2}+m m^{2}\right)}
\end{aligned}
$$

- Non-singular UV \& IR behavior Weinberg's "Asymptotic safety"
- Non-perturbative Quantum gravity

Close to Planck scale, all terms important

## Model

- Action $S=\frac{M_{p}^{2}}{2} \int d^{4} x \sqrt{-g}\left[R+\sum_{n=0} c_{n} R \diamond^{n} R\right] \quad c_{n} \sim \frac{1}{M^{2 n+2}}$
- Generalized ' `Einstein's" Field Equations

$$
\begin{aligned}
\tilde{G}_{\mu \nu} & \equiv G_{\mu \nu}+\sum_{n=0}^{\infty} G_{\mu \nu}^{n}=T_{\mu \nu} \\
G_{\mu \nu}^{n} & \sim c_{n}\left(\square^{n+1} R+\square^{p} R \square^{m} R\right)
\end{aligned}
$$

- Conservation Equation $\quad \nabla^{\mu} \tilde{G}_{\mu \nu}=0$

For Cosmology $\tilde{G}_{00}=0$ equation suffices

- Exact Bouncing solutions! $\mathrm{a}(\mathrm{t})=\cosh (\lambda \mathrm{t})$

$$
\Lambda \neq 0, \quad \rho_{\mathrm{rad}} \sim M_{s}^{2} M_{p}^{2} \quad \& \quad \lambda \sim M_{s}
$$

- Can Inflation be past-eternal $\boldsymbol{?}_{\text {[fucth, Vilenkin, Borde, indede] }}$

- Big Bounce: $\mathrm{H}=0 \quad \& \quad \ddot{a}>0$

$$
H^{2}=\frac{\sum \rho_{I}}{3 M_{p}^{2}}
$$

- Flat/Open: DEC,WEC violation


## Plan for the rect

- Consistent (ghostfree) modif ation of Gravi LQC, Bouncing and cyclic Universes Non-perturbative gravity $\Rightarrow$ Bouncing Universe
- Consistent (ghostfree) modification of Matte sector
- Ghost Condensation [Arkani-Hamed et.al.,Khoury et.al.]
- Casimir Energy and an "emergent cyclic Univers Hagedorn Physics \& Tolman's Entropy Problem
- Gap Energy and cosmological BCS fondensation
- Generating Scale-invariant Perturbations
- Scalar field fluctuations [Steinhardt et:al]
- Stringy thermodynamic fluctuations [Brndenberger,Nayeri \& Vafa]


## Thermodynamic Fluctuations during Hagedorn Phase

## Energy to Power Spectrum

- Energy to density fluctuations:

$$
\left|\delta \rho_{k}\right|^{2} \sim k^{3}\left|\delta E\left(r \sim k^{-1}\right)\right|^{2}
$$

- Energy fluctuations from Heat Capacity

$$
Z \sim \sum e^{-\beta E} \Rightarrow \delta E(r) \sim T^{2} C_{v} \sim \frac{T}{T_{H}-T} r^{2}
$$

- Matter fluctuations to metric perturbations

$$
\nabla^{2} \Phi=4 \pi G \delta \rho \quad \Rightarrow\left|\Phi_{k}\right|^{2} \sim k^{-4}\left|\delta \rho_{k}\right|^{2}
$$

- Power Spectrum

$$
P_{\Phi} \sim k^{3}\left|\Phi_{k}\right|^{2} \sim \frac{T}{T_{H}-T}
$$

## CMB Spectrum: Minimal Requirements

- Fluctuations should come from massive modes and not massless (radiation)
- Amplitude:

$$
\begin{aligned}
& C_{\text {rad }} \ll C_{\text {massive }} \quad \Rightarrow \frac{\Delta T}{T_{H}}<10^{-30} \\
& \delta_{C M B}^{2} \sim 10^{-10} \sim\left(\frac{M_{s}}{M_{p}}\right)^{4} \frac{T_{H}}{\Delta T} \\
& \frac{T_{H}}{\Delta T}=10^{30} \Rightarrow \frac{M_{s}}{M_{p}} \sim 10^{-10}
\end{aligned}
$$

- Spectral tilt:

$$
\left|\eta_{s}-1\right| \approx 10^{-60}\left(\frac{M_{s}}{\lambda}\right)^{2} \frac{T_{H}}{\Delta T}
$$

typically one obtains almost perfect scale-invariance!

## - t' Hooft dual to string theory

- Polyakov action:

$$
S=\int \frac{d^{2} \sigma}{2 \pi} \sqrt{-h}\left[\frac{h^{\alpha \beta}}{2 \alpha^{\prime}}\left(\partial_{\alpha} X\right)\left(\partial_{\beta} X\right)\right]
$$



- Strings on Random lattice [Douglas,shenker] $S=\sum_{i j}\left(X_{i}-X_{j}\right)^{2}$

$$
\Rightarrow Z=\int \mathcal{D} h \mathcal{D} X e^{-S}=\sum \int d^{D} X \prod_{i j} e^{-\frac{1}{2 \alpha^{\prime}}\left(X_{i}-X_{j}\right)^{2}}
$$

- Dual Field theory action

$$
\hat{S}=\int d^{D} x \operatorname{tr}\left[\frac{1}{2} \phi e^{-\alpha^{\prime} \square / 2} \phi+G^{n-2} \phi^{n}\right]
$$

Linear Regge trajectories: Confinement [Grisaru, Siegel, y ...]

## Finite Order Gravity

Improved UV behaviour: 4th Order Gravity
$S=\int d^{4} x \sqrt{-g}\left(R+c_{0} R^{2}+b_{0} C^{2}\right)$
even Renormalizable [stelle, 1978]
Asymptotically free + Renormalizable!
Unfortunately $\quad b_{0} \neq 0 \Rightarrow$ Ghosts
If $b_{0}=0$ Asymptotic freedom, Renormalizability lost

- (Ghost + assymptotically) free gravity => NP gravity


## Propagator

- Scalar-Tensor Picture: HD terms in $\varphi$

$$
S=\int d^{4} x \sqrt{-g}\left[e^{-\phi} R+\psi \sum_{0}^{\infty} c_{i} \square^{i} \psi-\left\{\psi\left(e^{-\phi}-1\right)\right\}\right]
$$

p-adic scalars in a curved background + dilaton?

- Field Equation

$$
\left(1-6 \sum_{0}^{\infty} c_{i} \square^{i+1}\right) \phi \equiv \Gamma(\square) \phi=0 \Rightarrow \Delta\left(p^{2}\right)=\frac{1}{\Gamma\left(-p^{2}\right)}
$$

- Ghost free if $\Gamma(\square)$ has:
a single zero, $\mathbf{R}^{2}$ gravity $\quad \Delta\left(p^{2}\right)=\frac{1}{\left(p^{2}+m^{2}\right)}$
no zeroes, Gaussian's $\quad \Delta\left(p^{2}\right)=e^{-p^{2} / m^{2}}$
- Improved UV behaviour:

$$
h \sim \frac{\operatorname{erf}(r)}{r}
$$

## Transition to FRW, $\mathbf{\Lambda}=\mathbf{0}$

## Late times

$$
a(t) \rightarrow e^{\lambda t} \& \mathrm{HD} \text { terms } \rightarrow \operatorname{sech}^{2}(\lambda \mathrm{t}) \sim e^{-2 \lambda t} \rightarrow 0
$$

=> Einstein Gravity \& dS Universe $=>\wedge \neq 0$

## Near Bounce

$\mathrm{G}_{00} \rightarrow 0$ but HD terms finite

## Approximate Bounce

- Small times: HD terms = radiation

We found ghost free examples

- Transition: HD terms ~ $\mathrm{G}_{00}$
- Large times: FRW cosmology, HD terms << 0

$$
a(t) \sim t^{1 / 2}, \quad G_{00} \sim \frac{1}{t^{2}}, \quad \tilde{G}_{00}^{n} \sim \frac{1}{t^{2(n+1)}}
$$

## Asymptotic Safety [Weinerg, 1976]

- Renormalizability replaced by asymptotic safety
- Quantum behavior captured by RG flow

$$
\mu \frac{d g(\mu)}{d \mu}=a g^{2}(\mu) \quad(a>0) \quad g(\kappa \mu)=\frac{g(\mu)}{1-a g(\mu) \ln \kappa}
$$

- Asymptotic safety $=$ non-singularity $\rightarrow$ UV fixed point 4 d gravity $=>\mathrm{G}_{\mathrm{N}} \rightarrow 0$ asymptotic freedom
- Although ghost free finite HD gravity theories exist, (Ghost + asymptotically) free gravity => NP gravity
- Quantum Gravity actions (closed under renormalization flows) contains specific infinite series of HD terms:
[ Krasnov, gr-qc/0703002]
Equivalent to "second order theory", no IVP


## Hagedorn Phase

## Qualitative Behaviour

- Close to $T=T_{H} \sim M_{S}$ massive (winding) string states are excited. Pumping energy doesn't increase temperature, produces new states.
- Thermodynamics no longer determined by massless modes: $\quad E=T_{H} S-b V T_{H}{ }^{d+1}+\ldots$
- Cosmological Evolution: Entropy is constant Energy, Temperature remains approximately constant

$$
\frac{\Delta T}{T_{H}} \equiv \frac{T_{H}-T}{T_{H}} \sim \exp \left[-\frac{E}{V^{2 / 3} T_{H}^{3}}\right]
$$

- Transition to radiation occur when $\mathrm{S} \sim \mathrm{VT}_{\mathrm{H}}{ }^{\mathrm{d}}$


## Cosmological BCS Condensation

- BCS Theory
- Free theory, fermions filled upto Fermi-sea
- Attractive four-fermion coupling contributes to negative energy.
- Vacuum gets a negative shift with the formation of mass-gap. $L=-i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi--$
- Auxillary field
- Integrate the fermions, use mean field theory to get non-perturbative potential for Delta
- Gap Equation


## Potential

- Trace equation (Lorentz gauge) $\quad g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$
$\Rightarrow \widetilde{G}=-\frac{1}{2} \square\left(1-6 \sum_{0}^{\infty} c_{i} \square^{i+1}\right) h=-\frac{1}{2} \square \Gamma(\square) h$
- Potential for h

$$
\widetilde{G} \sim-m \delta(\vec{r}) \Rightarrow h(r) \sim \frac{1}{r} \int_{-\infty}^{\infty} d p \frac{p}{p^{2} \Gamma\left(-p^{2}\right)} e^{i p r} \equiv \frac{G_{N}(r)}{r}
$$

- AF: falls off exponentially $\quad \Rightarrow G_{N}(r) \rightarrow r$
- Newtonian Limit $\Gamma\left(-p^{2}\right) \xrightarrow{p \rightarrow 0} 1 \quad \Rightarrow G_{N}(r) \rightarrow$ const .
- Example:

$$
\Gamma(\square)=e^{-\square} \Rightarrow h(r) \sim \frac{\operatorname{erf}(r)}{r}
$$

## Big Bang Singularity

- In GR at $t=0$ we encounter a singularity $R, \square R, \rho \rightarrow \infty$


Closed Geometry



Open Geometry


Flat Geometry


## Non-singular Bounce

- Ansatz: Find $a(t)$ such that $\square R \sim R$ (...)R(t)+(...)R2(t) ~ matter sources

Reduces to solving algebraic equation

- Hyperbolic Bounce $\mathrm{a}(\mathrm{t})=\cosh (\lambda \mathrm{t})$ works!
- Evolution

$$
\tilde{G}_{00}=T_{00}=\frac{1}{3}\left(\Lambda+\rho_{r a d}\right)
$$



