Tensor modes in loop quantum cosmology with G. Hossain, arXiv:0810.4330 [gr-qc]

Gianluca Calcagni

PENNSTATE 825
185

October 25th, 2008

Aims of the talk

Aims of the talk

- To compute cosmological observables from LQC linear tensor perturbations.

Aims of the talk

- To compute cosmological observables from LQC linear tensor perturbations.
- To discuss related issues and future directions.

Effective Friedmann equation

Ashtekar-Pawlowski-Singh 2006, Singh 2006, Singh-Vandersloot-Vereshchagin 2006, Bojowald 2007, Bojowald 2008

Effective Friedmann equation

Ashtekar-Pawlowski-Singh 2006, Singh 2006, Singh-Vandersloot-Vereshchagin 2006, Bojowald 2007, Bojowald 2008

$$
H^{2}=\frac{8 \pi G}{3} \rho\left(\alpha-\frac{\rho}{\rho_{\mathrm{c}}}\right)
$$

Effective Friedmann equation

Ashtekar-Pawlowski-Singh 2006, Singh 2006, Singh-Vandersloot-Vereshchagin 2006, Bojowald 2007, Bojowald 2008

$$
H^{2}=\frac{8 \pi G}{3} \rho\left(\alpha-\frac{\rho}{\rho_{\mathrm{c}}}\right)
$$

where

$$
\rho_{\mathrm{c}} \equiv \frac{3}{8 \pi G \gamma^{2} \bar{\mu}^{2} p} \propto a^{-2(1-2 n)}
$$

Effective Friedmann equation

Ashtekar-Pawlowski-Singh 2006, Singh 2006, Singh-Vandersloot-Vereshchagin 2006, Bojowald 2007, Bojowald 2008

$$
H^{2}=\frac{8 \pi G}{3} \rho\left(\alpha-\frac{\rho}{\rho_{\mathrm{c}}}\right)
$$

where

$$
\rho_{\mathrm{c}} \equiv \frac{3}{8 \pi G \gamma^{2} \bar{\mu}^{2} p} \propto a^{-2(1-2 n)} .
$$

$$
\alpha=\frac{1+n}{3 r} \lambda\left(\left|1+\frac{1}{\lambda}\right|^{\frac{3 r}{2(1+n)}}-\left|1-\frac{1}{\lambda}\right|^{\frac{3 r}{2(1+n)}}\right), \quad \lambda \sim \mathcal{V}^{2(1+n) / 3}
$$

Two regimes (well-defined in inhomogeneous patches)

Two regimes (well-defined in inhomogeneous patches)

\square
Quasi-classical regime: arge volumes

Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes

$$
\alpha \approx 1+\left[\frac{3 r}{2(1+n)}-2\right]\left[\frac{3 r}{2(1+n)}-1\right] \frac{1}{6 \lambda^{2}}
$$

Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes

$$
\begin{aligned}
\alpha & \approx 1+\left[\frac{3 r}{2(1+n)}-2\right]\left[\frac{3 r}{2(1+n)}-1\right] \frac{1}{6 \lambda^{2}} \\
& \equiv 1+\alpha_{c}\left(\frac{\sqrt{\Delta}}{a}\right)^{c}
\end{aligned}
$$

Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes

$$
\begin{aligned}
\alpha & \approx 1+\left[\frac{3 r}{2(1+n)}-2\right]\left[\frac{3 r}{2(1+n)}-1\right] \frac{1}{6 \lambda^{2}} \\
& \equiv 1+\alpha_{c}\left(\frac{\sqrt{\Delta}}{a}\right)^{c}
\end{aligned}
$$

where

$$
c=4(1+n), \quad \alpha_{c}=\frac{[3 r-4(1+n)][3 r-2(1+n)]}{3^{4} 2}\left(\frac{\Delta_{\mathrm{Pl}}}{\Delta}\right)^{2} .
$$

Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes

$$
\begin{aligned}
\alpha & \approx 1+\left[\frac{3 r}{2(1+n)}-2\right]\left[\frac{3 r}{2(1+n)}-1\right] \frac{1}{6 \lambda^{2}} \\
& \equiv 1+\alpha_{c}\left(\frac{\sqrt{\Delta}}{a}\right)^{c}
\end{aligned}
$$

where

$$
c=4(1+n), \quad \alpha_{c}=\frac{[3 r-4(1+n)][3 r-2(1+n)]}{3^{4} 2}\left(\frac{\Delta_{\mathrm{Pl}}}{\Delta}\right)^{2}
$$

Assuming $\Delta=\Delta_{\mathrm{Pl}}$

$$
4<c \leq 6, \quad-0.01 \approx-\frac{1}{162}<\alpha_{c}<\frac{1}{9} \approx 0.1
$$

Two regimes (well-defined in inhomogeneous patches)

Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime $(\lambda \ll 1)$

Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime $(\lambda \ll 1)$

$$
\alpha \approx \lambda^{2-\frac{3 r}{2(1+n)}}
$$

Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime $(\lambda \ll 1)$

$$
\alpha \approx \lambda^{2-\frac{3 r}{2(1+n)}} \equiv \alpha_{q}\left(\frac{a}{\sqrt{\Delta}}\right)^{q_{\alpha}}
$$

Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime $(\lambda \ll 1)$

$$
\alpha \approx \lambda^{2-\frac{3 r}{2(1+n)}} \equiv \alpha_{q}\left(\frac{a}{\sqrt{\Delta}}\right)^{q_{\alpha}}
$$

where

$$
q_{\alpha}=4(1+n)-3 r, \quad \alpha_{q}=\left[\frac{3 \sqrt{3}}{2(1+n)} \frac{\Delta}{\Delta_{\mathrm{Pl}}}\right]^{\frac{q_{\alpha}}{2(1+n)}} .
$$

Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime $(\lambda \ll 1)$

$$
\alpha \approx \lambda^{2-\frac{3 r}{2(1+n)}} \equiv \alpha_{q}\left(\frac{a}{\sqrt{\Delta}}\right)^{q_{\alpha}}
$$

where

$$
q_{\alpha}=4(1+n)-3 r, \quad \alpha_{q}=\left[\frac{3 \sqrt{3}}{2(1+n)} \frac{\Delta}{\Delta_{\mathrm{Pl}}}\right]^{\frac{q_{\alpha}}{2(1+n)}} .
$$

$$
1<q_{\alpha}<6, \quad 1.6 \approx \frac{3^{3 / 4}}{\sqrt{2}}<\alpha_{q}<\frac{27}{4} \approx 6.8
$$

Coefficients

Coefficients

(1) α maintains the same structure in different quantization schemes, where c and q_{α} are robust in the choice of the parameters.

Coefficients

(1) α maintains the same structure in different quantization schemes, where c and q_{α} are robust in the choice of the parameters.
(2) 'Natural' values (dictated by the form of the Hamiltonian or other considerations)

Coefficients

(1) α maintains the same structure in different quantization schemes, where c and q_{α} are robust in the choice of the parameters.
(2) 'Natural' values (dictated by the form of the Hamiltonian or other considerations)

$$
r=1, \quad n=1 / 2
$$

Coefficients

(1) α maintains the same structure in different quantization schemes, where c and q_{α} are robust in the choice of the parameters.
(2) 'Natural' values (dictated by the form of the Hamiltonian or other considerations)

$$
\begin{gathered}
r=1, \quad n=1 / 2 \\
c=6, \quad \alpha_{c}=0, \quad \alpha_{q}=\sqrt{3}, \quad q_{\alpha}=3 .
\end{gathered}
$$

Tensor perturbations

Bojowald-Hossain 2007

Tensor perturbations

Bojowald-Hossain 2007

$$
d s^{2}=-d t^{2}+a^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}
$$

Tensor perturbations

Bojowald-Hossain 2007

$$
d s^{2}=-d t^{2}+a^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}
$$

Triad and connection separated into a FRW background and an inhomogeneous perturbation:

$$
E_{i}^{a}=a^{2} \delta_{i}^{a}+\delta E_{i}^{a}, \quad A_{a}^{i}=c \delta_{a}^{i}+\left(\delta \Gamma_{a}^{i}+\gamma \delta K_{a}^{i}\right)
$$

Tensor perturbations

Bojowald-Hossain 2007

$$
d s^{2}=-d t^{2}+a^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}
$$

Triad and connection separated into a FRW background and an inhomogeneous perturbation:

$$
E_{i}^{a}=a^{2} \delta_{i}^{a}+\delta E_{i}^{a}, \quad A_{a}^{i}=c \delta_{a}^{i}+\left(\delta \Gamma_{a}^{i}+\gamma \delta K_{a}^{i}\right)
$$

Then

$$
\delta E_{i}^{a}=-\frac{1}{2} a^{2} h_{i}^{a}, \quad \delta K_{a}^{i}=\frac{1}{2}\left(\frac{1}{\alpha} \partial_{\tau} h_{i}^{a}+\frac{c}{\gamma} h_{i}^{a}\right)
$$

Tensor perturbations

Bojowald-Hossain 2007

$$
d s^{2}=-d t^{2}+a^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}
$$

Triad and connection separated into a FRW background and an inhomogeneous perturbation:

$$
E_{i}^{a}=a^{2} \delta_{i}^{a}+\delta E_{i}^{a}, \quad A_{a}^{i}=c \delta_{a}^{i}+\left(\delta \Gamma_{a}^{i}+\gamma \delta K_{a}^{i}\right)
$$

Then

$$
\delta E_{i}^{a}=-\frac{1}{2} a^{2} h_{i}^{a}, \quad \delta K_{a}^{i}=\frac{1}{2}\left(\frac{1}{\alpha} \partial_{\tau} h_{i}^{a}+\frac{c}{\gamma} h_{i}^{a}\right)
$$

and

$$
\left\{\delta K_{a}^{i}(\mathbf{x}), \delta E_{j}^{b}(\mathbf{y})\right\}=8 \pi G \delta_{a}^{b} \delta_{j}^{i} \delta(\mathbf{x}, \mathbf{y})
$$

Mukhanov equation

Mukhanov equation

Conformal time $\tau \equiv \int \frac{d t}{a}$.

Mukhanov equation

Conformal time $\tau \equiv \int \frac{d t}{a}$.
Only inverse-volume corrections:

$$
\partial_{\tau}^{2} h_{k}+\mathcal{H}\left(2-\frac{d \ln \alpha}{d \ln a}\right) \partial_{\tau} h_{k}+\alpha^{2} k^{2} h_{k}=0 .
$$

Mukhanov equation

Conformal time $\tau \equiv \int \frac{d t}{a}$.
Only inverse-volume corrections:

$$
\partial_{\tau}^{2} h_{k}+\mathcal{H}\left(2-\frac{d \ln \alpha}{d \ln a}\right) \partial_{\tau} h_{k}+\alpha^{2} k^{2} h_{k}=0 .
$$

We solve it in large- and small-volume regimes separately.

Background

Background

$$
a=\tau^{p}, \quad \mathcal{H} \equiv \frac{\partial_{\tau} a}{a}=a H=\frac{p}{\tau}
$$

Background

$$
a=\tau^{p}, \quad \mathcal{H} \equiv \frac{\partial_{\tau} a}{a}=a H=\frac{p}{\tau}
$$

Issue here...

Background

$$
a=\tau^{p}, \quad \mathcal{H} \equiv \frac{\partial_{\tau} a}{a}=a H=\frac{p}{\tau} .
$$

Issue here... discussion later.

Background

$$
a=\tau^{p}, \quad \mathcal{H} \equiv \frac{\partial_{\tau} a}{a}=a H=\frac{p}{\tau} .
$$

Issue here... discussion later.
First slow-roll parameter

$$
\epsilon=-\frac{\dot{H}}{H^{2}}=1+\frac{1}{p}
$$

Background

$$
a=\tau^{p}, \quad \mathcal{H} \equiv \frac{\partial_{\tau} a}{a}=a H=\frac{p}{\tau} .
$$

Issue here... discussion later.
First slow-roll parameter

$$
\epsilon=-\frac{\dot{H}}{H^{2}}=1+\frac{1}{p}
$$

Inflation occurs for $p<-1$ (de Sitter: $p=-1$), superinflation when $-1<p<0$.

Outline

(9) Background

(2) Tensor perturbations

- Near-Planckian regime
- Quasi-classical regime

Near-Planckian regime: Solution

Near-Planckian regime: Solution

- Mukhanov variable $w_{k} \equiv a h_{k}$, time variable $z \equiv \int d \tau \alpha=\tau \alpha /\left(1+p q_{\alpha}\right)$

Near-Planckian regime: Solution

- Mukhanov variable $w_{k} \equiv a h_{k}$, time variable $z \equiv \int d \tau \alpha=\tau \alpha /\left(1+p q_{\alpha}\right)$
- $\partial_{z}^{2} w_{k}+\left(k^{2}-\frac{4 \nu^{2}-1}{4 z^{2}}\right) w_{k}=0$, where $\nu \equiv 1 / 2-p /\left(1+p q_{\alpha}\right)$

Near-Planckian regime: Solution

- Mukhanov variable $w_{k} \equiv a h_{k}$, time variable $z \equiv \int d \tau \alpha=\tau \alpha /\left(1+p q_{\alpha}\right)$
- $\partial_{z}^{2} w_{k}+\left(k^{2}-\frac{4 \nu^{2}-1}{4 z^{2}}\right) w_{k}=0$, where $\nu \equiv 1 / 2-p /\left(1+p q_{\alpha}\right)$
- Solution: $w_{k}=C_{1} \sqrt{-k z} H_{\nu}^{(1)}(-k z)+C_{2} \sqrt{-k z} H_{\nu}^{(2)}(-k z)$

Near-Planckian regime: Solution

- Mukhanov variable $w_{k} \equiv a h_{k}$, time variable $z \equiv \int d \tau \alpha=\tau \alpha /\left(1+p q_{\alpha}\right)$
- $\partial_{z}^{2} w_{k}+\left(k^{2}-\frac{4 \nu^{2}-1}{4 z^{2}}\right) w_{k}=0$, where $\nu \equiv 1 / 2-p /\left(1+p q_{\alpha}\right)$
- Solution: $w_{k}=C_{1} \sqrt{-k z} H_{\nu}^{(1)}(-k z)+C_{2} \sqrt{-k z} H_{\nu}^{(2)}(-k z)$
- $C_{2}=0$ (advancing plane wave at small scales)

Near-Planckian regime: Solution

- Mukhanov variable $w_{k} \equiv a h_{k}$, time variable

$$
z \equiv \int d \tau \alpha=\tau \alpha /\left(1+p q_{\alpha}\right)
$$

- $\partial_{z}^{2} w_{k}+\left(k^{2}-\frac{4 \nu^{2}-1}{4 z^{2}}\right) w_{k}=0$, where $\nu \equiv 1 / 2-p /\left(1+p q_{\alpha}\right)$
- Solution: $w_{k}=C_{1} \sqrt{-k z} H_{\nu}^{(1)}(-k z)+C_{2} \sqrt{-k z} H_{\nu}^{(2)}(-k z)$
- $C_{2}=0$ (advancing plane wave at small scales)
- Large- and short-wavelength limits of the solution $(\nu>0)$

$$
\begin{array}{ll}
w_{k} \sim-i C_{1} \frac{2^{\nu} \Gamma(\nu)}{\pi}(-k z)^{1 / 2-\nu}, & |k z| \ll 1 \\
w_{k} \sim C_{1} \sqrt{\frac{2}{\pi}} e^{-i\left(k z+\frac{\pi}{2} \nu+\frac{\pi}{4}\right)}, & |k z| \gg 1
\end{array}
$$

Near-Planckian regime: Normalization

Near-Planckian regime: Normalization

Constant C_{1} is determined by choosing the Bunch-Davis vacuum, $w_{k} \sim e^{-i k z} / \sqrt{2 k}$.

Near-Planckian regime: Normalization

Constant C_{1} is determined by choosing the Bunch-Davis vacuum, $w_{k} \sim e^{-i k z} / \sqrt{2 k}$.
Operator $\hat{u}_{k}=a \hat{h}_{k}=w_{k} a_{k}+w_{k}^{*} a_{k}^{\dagger}$ obeys

$$
\left[\hat{u}_{k_{1}}, \partial_{\tau} \hat{u}_{k_{2}}\right]=32 \pi \ell_{\mathrm{Pl}}^{2} i \alpha \delta\left(k_{1}, k_{2}\right) .
$$

Near-Planckian regime: Normalization

Constant C_{1} is determined by choosing the Bunch-Davis vacuum, $w_{k} \sim e^{-i k z} / \sqrt{2 k}$.
Operator $\hat{u}_{k}=a \hat{h}_{k}=w_{k} a_{k}+w_{k}^{*} a_{k}^{\dagger}$ obeys

$$
\left[\hat{u}_{k_{1}}, \partial_{\tau} \hat{u}_{k_{2}}\right]=32 \pi \ell_{\mathrm{Pl}}^{2} i \alpha \delta\left(k_{1}, k_{2}\right) .
$$

Wronskian:

$$
w_{k} \partial_{\tau} w_{k}^{*}-w_{k}^{*} \partial_{\tau} w_{k}=i\left(32 \pi \ell_{\mathrm{Pl}}^{2}\right) \alpha
$$

Near-Planckian regime: Normalization

Constant C_{1} is determined by choosing the Bunch-Davis vacuum, $w_{k} \sim e^{-i k z} / \sqrt{2 k}$.
Operator $\hat{u}_{k}=a \hat{h}_{k}=w_{k} a_{k}+w_{k}^{*} a_{k}^{\dagger}$ obeys

$$
\left[\hat{u}_{k_{1}}, \partial_{\tau} \hat{u}_{k_{2}}\right]=32 \pi \ell_{\mathrm{Pl}}^{2} i \alpha \delta\left(k_{1}, k_{2}\right) .
$$

Wronskian:

$$
w_{k} \partial_{\tau} w_{k}^{*}-w_{k}^{*} \partial_{\tau} w_{k}=i\left(32 \pi \ell_{\mathrm{Pl}}^{2}\right) \alpha .
$$

Plugging in the short-scale solution, one gets $\left|C_{1}\right|=\sqrt{8 \pi^{2} \ell_{\mathrm{Pl}}^{2} / k}$.

Near-Planckian regime: Spectrum

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
$k_{*}=\frac{\sqrt{4 \nu^{2}-1}}{2 z}=\frac{\mathcal{H}}{\alpha} \sqrt{1-q_{\alpha}-\frac{1}{p}}$.

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
$k_{*}=\frac{\sqrt{4 \nu^{2}-1}}{2 z}=\frac{\mathcal{H}}{\alpha} \sqrt{1-q_{\alpha}-\frac{1}{p}}$.
Well defined only if $p>1 /\left(1-q_{\alpha}\right)$.

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
$k_{*}=\frac{\sqrt{4 \nu^{2}-1}}{2 z}=\frac{\mathcal{H}}{\alpha} \sqrt{1-q_{\alpha}-\frac{1}{p}}$.
Well defined only if $p>1 /\left(1-q_{\alpha}\right)$. Stronger condition
$p>-1 / q_{\alpha}>-1$ (z flows along the same direction at τ, modes exit horizon)

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
$k_{*}=\frac{\sqrt{4 \nu^{2}-1}}{2 z}=\frac{\mathcal{H}}{\alpha} \sqrt{1-q_{\alpha}-\frac{1}{p}}$.
Well defined only if $p>1 /\left(1-q_{\alpha}\right)$. Stronger condition
$p>-1 / q_{\alpha}>-1$ (z flows along the same direction at τ, modes exit horizon)
Tensor spectrum:

$$
\left.\left.A_{T}^{2} \equiv \frac{\mathcal{P}_{h}}{100} \equiv \frac{k^{3}}{200 \pi^{2} a^{2}} \sum_{+, \times}\langle | \hat{u}_{k \ll \mathcal{H}}\right|^{2}\right\rangle\left.\right|_{k=k_{*}}
$$

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
$k_{*}=\frac{\sqrt{4 \nu^{2}-1}}{2 z}=\frac{\mathcal{H}}{\alpha} \sqrt{1-q_{\alpha}-\frac{1}{p}}$.
Well defined only if $p>1 /\left(1-q_{\alpha}\right)$. Stronger condition
$p>-1 / q_{\alpha}>-1$ (z flows along the same direction at τ, modes exit horizon)
Tensor spectrum:

$$
\begin{aligned}
A_{T}^{2} & \left.\left.\equiv \frac{\mathcal{P}_{h}}{100} \equiv \frac{k^{3}}{200 \pi^{2} a^{2}} \sum_{+, \times}\langle | \hat{u}_{k \ll \mathcal{H}}\right|^{2}\right\rangle\left.\right|_{k=k_{*}} \\
& \propto \frac{H^{2}}{\alpha^{2}}
\end{aligned}
$$

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
$k_{*}=\frac{\sqrt{4 \nu^{2}-1}}{2 z}=\frac{\mathcal{H}}{\alpha} \sqrt{1-q_{\alpha}-\frac{1}{p}}$.
Well defined only if $p>1 /\left(1-q_{\alpha}\right)$. Stronger condition
$p>-1 / q_{\alpha}>-1$ (z flows along the same direction at τ, modes exit horizon)
Tensor spectrum:

$$
\begin{aligned}
A_{T}^{2} & \left.\left.\equiv \frac{\mathcal{P}_{h}}{100} \equiv \frac{k^{3}}{200 \pi^{2} a^{2}} \sum_{+, \times}\langle | \hat{u}_{k \ll \mathcal{H}}\right|^{2}\right\rangle\left.\right|_{k=k_{*}} \\
& \propto \frac{H^{2}}{\alpha^{2}} \propto k^{2\left(1+p+p q_{\alpha}\right) /\left(1+p q_{\alpha}\right)}
\end{aligned}
$$

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
$k_{*}=\frac{\sqrt{4 \nu^{2}-1}}{2 z}=\frac{\mathcal{H}}{\alpha} \sqrt{1-q_{\alpha}-\frac{1}{p}}$.
Well defined only if $p>1 /\left(1-q_{\alpha}\right)$. Stronger condition
$p>-1 / q_{\alpha}>-1$ (z flows along the same direction at τ, modes exit horizon)
Tensor spectrum:

$$
\begin{aligned}
A_{T}^{2} & \left.\left.\equiv \frac{\mathcal{P}_{h}}{100} \equiv \frac{k^{3}}{200 \pi^{2} a^{2}} \sum_{+, \times}\langle | \hat{u}_{k \ll \mathcal{H}}\right|^{2}\right\rangle\left.\right|_{k=k_{*}} \\
& \propto \frac{H^{2}}{\alpha^{2}} \propto k^{2\left(1+p+p q_{\alpha}\right) /\left(1+p q_{\alpha}\right)}
\end{aligned}
$$

Tensor spectral index:

$$
\left.n_{T} \equiv \frac{d \ln A_{T}^{2}}{d \ln k}\right|_{k=k_{*}}=\frac{2\left(\epsilon+q_{\alpha}\right)}{\epsilon+q_{\alpha}-1}
$$

Stochastic background of primordial gravitational waves

$$
\Omega_{\mathrm{gw}}=\frac{1}{\rho_{\text {crit }}} \frac{d \rho_{\mathrm{gw}}}{d \ln f} \propto T(k)^{2} A_{T}^{2}
$$

Stochastic background of primordial gravitational waves

$$
\begin{gathered}
\Omega_{\mathrm{gw}}=\frac{1}{\rho_{\mathrm{crit}}} \frac{d \rho_{\mathrm{gw}}}{d \ln f} \propto T(k)^{2} A_{T}^{2} \\
n_{T} \approx \frac{1}{\ln f-\ln f_{0}} \ln \left(2.29 \times 10^{14} \frac{h^{2} \Omega_{\mathrm{gw}}(f)}{r}\right)
\end{gathered}
$$

Stochastic background of primordial gravitational waves

$$
\begin{gathered}
\Omega_{\mathrm{gw}}=\frac{1}{\rho_{\text {crit }}} \frac{d \rho_{\mathrm{gw}}}{\ln f} \propto T(k)^{2} A_{T}^{2} \\
n_{T} \approx \frac{1}{\ln f-\ln f_{0}} \ln \left(2.29 \times 10^{14} \frac{h^{2} \Omega_{\mathrm{gw}}(f)}{r}\right)
\end{gathered}
$$

- Pulsar timing, LIGO, LISA, BBN place strong constraints.

Stochastic background of primordial gravitational waves

$$
\begin{gathered}
\Omega_{\mathrm{gw}}=\frac{1}{\rho_{\text {crit }}} \frac{d \rho_{\mathrm{gw}}}{\ln f} \propto T(k)^{2} A_{T}^{2} \\
n_{T} \approx \frac{1}{\ln f-\ln f_{0}} \ln \left(2.29 \times 10^{14} \frac{h^{2} \Omega_{\mathrm{gw}}(f)}{r}\right)
\end{gathered}
$$

- Pulsar timing, LIGO, LISA, BBN place strong constraints.
- Taking upper bound $r<0.30$, from pulsar timing $n_{T} \lesssim 0.79$, from BBN $n_{T} \lesssim 0.15$.

Stochastic background of primordial gravitational waves

$$
\begin{gathered}
\Omega_{\mathrm{gw}}=\frac{1}{\rho_{\text {crit }}} \frac{d \rho_{\mathrm{gw}}}{\ln f} \propto T(k)^{2} A_{T}^{2} \\
n_{T} \approx \frac{1}{\ln f-\ln f_{0}} \ln \left(2.29 \times 10^{14} \frac{h^{2} \Omega_{\mathrm{gw}}(f)}{r}\right)
\end{gathered}
$$

- Pulsar timing, LIGO, LISA, BBN place strong constraints.
- Taking upper bound $r<0.30$, from pulsar timing $n_{T} \lesssim 0.79$, from $\mathrm{BBN} n_{T} \lesssim 0.15$.
- If $r \sim 10^{-8}$, still these bounds are $n_{T}<1$.

Near-Planckian regime: Excluded?

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1 / q_{\alpha}<p \lesssim-1 /\left(q_{\alpha}+1\right)$,

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1 / q_{\alpha}<p \lesssim-1 /\left(q_{\alpha}+1\right)$, but could spoil scale invariance of scalar spectrum.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1 / q_{\alpha}<p \lesssim-1 /\left(q_{\alpha}+1\right)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1 / q_{\alpha}<p \lesssim-1 /\left(q_{\alpha}+1\right)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.
- 2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1 / q_{\alpha}<p \lesssim-1 /\left(q_{\alpha}+1\right)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.
- 2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.
- 3: Close to the bounce, power-law evolution may not be a good approximation.

Near-Planckian regime: Excluded?

- Quasi-de Sitter limit $(\epsilon \approx 0): n_{T} \approx 2 q_{\alpha} /\left(q_{\alpha}-1\right)>12 / 5$. Strong blue tilt.
- Deep superacceleration $\left(\epsilon \ll-q_{\alpha}\right)$: $n_{T} \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1 / q_{\alpha}<p \lesssim-1 /\left(q_{\alpha}+1\right)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.
- 2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.
- 3: Close to the bounce, power-law evolution may not be a good approximation. However, $a \approx$ const.

Outline

(9) Background

(2) Tensor perturbations

- Near-Planckian regime
- Quasi-classical regime

Quasi-classical regime: Solution

Quasi-classical regime: Solution

Mukhanov equation:
$\partial_{\tau}^{2} w_{k}+c \mathcal{H}(\alpha-1) \partial_{\tau} w_{k}+\left\{(2 \alpha-1) k^{2}+\mathcal{H}^{2}[\epsilon-2-c(\alpha-1)]\right\} w_{k} \approx 0$.

Quasi-classical regime: Solution

Mukhanov equation:
$\partial_{\tau}^{2} w_{k}+c \mathcal{H}(\alpha-1) \partial_{\tau} w_{k}+\left\{(2 \alpha-1) k^{2}+\mathcal{H}^{2}[\epsilon-2-c(\alpha-1)]\right\} w_{k} \approx 0$.

Solution perturbative in $\alpha_{c}\left(\alpha_{c} \neq 0\right.$; natural choice trivial):

$$
w_{k}=w_{k}^{(0)}+\alpha_{c} w_{k}^{(1)}
$$

Quasi-classical regime: Solution

Mukhanov equation:
$\partial_{\tau}^{2} w_{k}+c \mathcal{H}(\alpha-1) \partial_{\tau} w_{k}+\left\{(2 \alpha-1) k^{2}+\mathcal{H}^{2}[\epsilon-2-c(\alpha-1)]\right\} w_{k} \approx 0$.

Solution perturbative in $\alpha_{c}\left(\alpha_{c} \neq 0\right.$; natural choice trivial):

$$
w_{k}=w_{k}^{(0)}+\alpha_{c} w_{k}^{(1)}
$$

$$
\begin{aligned}
& \partial_{\tau}^{2} w_{k}^{(0)}+\left[k^{2}+\mathcal{H}^{2}(\epsilon-2)\right] w_{k}^{(0)}=0 \\
& \partial_{\tau}^{2} w_{k}^{(1)}+\left[k^{2}+\mathcal{H}^{2}(\epsilon-2)\right] w_{k}^{(1)}+r(\tau)=0
\end{aligned}
$$

Quasi-classical regime: Solution

Mukhanov equation:
$\partial_{\tau}^{2} w_{k}+c \mathcal{H}(\alpha-1) \partial_{\tau} w_{k}+\left\{(2 \alpha-1) k^{2}+\mathcal{H}^{2}[\epsilon-2-c(\alpha-1)]\right\} w_{k} \approx 0$.

Solution perturbative in $\alpha_{c}\left(\alpha_{c} \neq 0\right.$; natural choice trivial):

$$
w_{k}=w_{k}^{(0)}+\alpha_{c} w_{k}^{(1)}
$$

$$
\begin{aligned}
& \partial_{\tau}^{2} w_{k}^{(0)}+\left[k^{2}+\mathcal{H}^{2}(\epsilon-2)\right] w_{k}^{(0)}=0 \\
& \partial_{\tau}^{2} w_{k}^{(1)}+\left[k^{2}+\mathcal{H}^{2}(\epsilon-2)\right] w_{k}^{(1)}+r(\tau)=0 \\
& r(\tau) \equiv\left(\frac{\sqrt{\Delta}}{a}\right)^{c}\left[c \mathcal{H} \partial_{\tau} w_{k}^{(0)}+\left(2 k^{2}-c \mathcal{H}^{2}\right) w_{k}^{(0)}\right]
\end{aligned}
$$

Quasi-classical regime: Asymptotic solutions

Quasi-classical regime: Asymptotic solutions

At large scales:

$$
w_{k \ll \mathcal{H}}=C_{1}\left(1+\alpha_{c} C_{2}\right) \tau^{p}
$$

Quasi-classical regime: Asymptotic solutions

At large scales:

$$
w_{k \ll \mathcal{H}}=C_{1}\left(1+\alpha_{c} C_{2}\right) \tau^{p}
$$

At small scales:

$$
w_{k \gg \mathcal{H}}^{(0)}=\sqrt{\frac{16 \pi \ell_{\mathrm{Pl}}^{2}}{k}} e^{-i k \tau}
$$

Quasi-classical regime: Asymptotic solutions

At large scales:

$$
w_{k \ll \mathcal{H}}=C_{1}\left(1+\alpha_{c} C_{2}\right) \tau^{p}
$$

At small scales:

$$
\begin{aligned}
& w_{k \gg \mathcal{H}}^{(0)}=\sqrt{\frac{16 \pi \ell_{\mathrm{Pl}}^{2}}{k}} e^{-i k \tau} \\
& w_{k \gg \mathcal{H}}=w_{k \gg \mathcal{H}}^{(0)}\left[1+\alpha_{c} \frac{i k \tau}{c p-1}\left(\frac{\sqrt{\Delta}}{\tau^{p}}\right)^{c}\right]
\end{aligned}
$$

Quasi-classical regime: Normalization

Quasi-classical regime: Normalization

- Horizon crossing at $k_{*}=\mathcal{H} \sqrt{1-\frac{1}{p}}$

Quasi-classical regime: Normalization

- Horizon crossing at $k_{*}=\mathcal{H} \sqrt{1-\frac{1}{p}}$

$$
\begin{aligned}
C_{1}(k) & =\sqrt{\frac{16 \pi \ell_{\mathrm{Pl}}^{2}}{k}} \frac{e^{-i k \tau_{*}}}{\tau_{*}^{p}} \equiv \tilde{C}_{1} k^{p-1 / 2} \\
C_{2}(k) & =\frac{i k_{*} \tau_{*}}{c p-1}\left(\frac{\sqrt{\Delta}}{\tau_{*}^{p}}\right)^{c} \equiv \tilde{C}_{2} k^{c p}
\end{aligned}
$$

Quasi-classical regime: Normalization

- Horizon crossing at $k_{*}=\mathcal{H} \sqrt{1-\frac{1}{p}}$

$$
\begin{aligned}
C_{1}(k) & =\sqrt{\frac{16 \pi \ell_{\mathrm{Pl}}^{2}}{k}} \frac{e^{-i k \tau_{*}}}{\tau_{*}^{p}} \equiv \tilde{C}_{1} k^{p-1 / 2} \\
C_{2}(k) & =\frac{i k_{*} \tau_{*}}{c p-1}\left(\frac{\sqrt{\Delta}}{\tau_{*}^{p}}\right)^{c} \equiv \tilde{C}_{2} k^{c p}
\end{aligned}
$$

- Correction term decays in time.

Quasi-classical regime: Spectrum

Quasi-classical regime: Spectrum

$$
A_{T}^{2}=\frac{4 \ell_{\mathrm{Pl}}^{2}}{25 \pi} \frac{k^{2(1+p)}}{[p(p-1)]^{p}}\left(1+\delta_{\mathrm{Pl}}\right),
$$

Quasi-classical regime: Spectrum

$$
A_{T}^{2}=\frac{4 \ell_{\mathrm{Pl}}^{2}}{25 \pi} \frac{k^{2(1+p)}}{[p(p-1)]^{p}}\left(1+\delta_{\mathrm{Pl}}\right)
$$

where

$$
\delta_{\mathrm{Pl}} \equiv \alpha_{c}^{2}\left|\tilde{C}_{2}\right|^{2} k^{2 c p}
$$

Quasi-classical regime: Spectrum

$$
A_{T}^{2}=\frac{4 \ell_{\mathrm{Pl}}^{2}}{25 \pi} \frac{k^{2(1+p)}}{[p(p-1)]^{p}}\left(1+\delta_{\mathrm{Pl}}\right)
$$

where

$$
\delta_{\mathrm{PI}} \equiv \alpha_{c}^{2}\left|\tilde{C}_{2}\right|^{2} k^{2 c p}
$$

Tensor index:

$$
n_{T} \approx 2\left(1+p+c p \delta_{\mathrm{Pl}}\right)=\frac{-2\left(\epsilon+c \delta_{\mathrm{Pl}}\right)}{1-\epsilon}
$$

Conclusions

- Near-Planckian regime possibly disfavoured.

Conclusions

- Near-Planckian regime possibly disfavoured.
- However, there are caveats to be addressed.

Conclusions

- Near-Planckian regime possibly disfavoured.
- However, there are caveats to be addressed.
- Only nonperturbative formalisms (covariant, δN, separate universe, etc.) could be trusted (also relevant for anomaly issue).

Conclusions

- Near-Planckian regime possibly disfavoured.
- However, there are caveats to be addressed.
- Only nonperturbative formalisms (covariant, δN, separate universe, etc.) could be trusted (also relevant for anomaly issue).
- Quasi-classical result reliable, but scalar sector still under inspection.

