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Effective Friedmann equation
Ashtekar-Pawlowski-Singh 2006, Singh 2006, Singh-Vandersloot-Vereshchagin 2006,
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Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes (λ � 1)
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4 < c ≤ 6 , −0.01 ≈ − 1
162 < αc < 1

9 ≈ 0.1
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Coefficients

1 α maintains the same structure in different quantization
schemes, where c and qα are robust in the choice of the
parameters.

2 ‘Natural’ values (dictated by the form of the Hamiltonian or
other considerations)

r = 1 , n = 1/2

c = 6 , αc = 0 , αq =
√

3 , qα = 3 .
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Tensor perturbations
Bojowald-Hossain 2007

ds2 = −dt2 + a2(δij + hij)dxidxj

Triad and connection separated into a FRW background and an
inhomogeneous perturbation:

Ea
i = a2δa

i + δEa
i , Ai

a = cδi
a + (δΓi

a + γδKi
a)

Then

δEa
i = −1

2
a2ha

i , δKi
a =

1
2

(
1
α

∂τ ha
i +

c
γ

ha
i

)
and

{δKi
a(x), δEb

j (y)} = 8πGδb
aδ

i
jδ(x, y)
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Mukhanov equation

Conformal time τ ≡
∫ dt

a .
Only inverse-volume corrections:

∂2
τ hk +H

(
2− d ln α

d ln a

)
∂τ hk + α2k2hk = 0 .

We solve it in large- and small-volume regimes separately.
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Background

a = τ p, H ≡ ∂τ a
a

= aH =
p
τ
.

Issue here... discussion later.
First slow-roll parameter

ε = − Ḣ
H2 = 1 +

1
p

.

Inflation occurs for p < −1 (de Sitter: p = −1), superinflation
when −1 < p < 0.
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Near-Planckian regime: Solution

Mukhanov variable wk ≡ ahk, time variable
z ≡

∫
dτα = τα/(1 + pqα)

∂2
z wk +

(
k2 − 4ν2−1

4z2

)
wk = 0, where ν ≡ 1/2− p/(1 + pqα)

Solution: wk = C1
√
−kz H(1)

ν (−kz) + C2
√
−kz H(2)

ν (−kz)
C2 = 0 (advancing plane wave at small scales)
Large- and short-wavelength limits of the solution (ν > 0)

wk ∼ −iC1
2νΓ(ν)

π
(−kz)1/2−ν , |kz| � 1 ,

wk ∼ C1

√
2
π

e−i(kz+π
2 ν+π

4 ) , |kz| � 1 .



Background Tensor perturbations Conclusions

Near-Planckian regime: Solution

Mukhanov variable wk ≡ ahk, time variable
z ≡

∫
dτα = τα/(1 + pqα)

∂2
z wk +

(
k2 − 4ν2−1

4z2

)
wk = 0, where ν ≡ 1/2− p/(1 + pqα)

Solution: wk = C1
√
−kz H(1)

ν (−kz) + C2
√
−kz H(2)

ν (−kz)
C2 = 0 (advancing plane wave at small scales)
Large- and short-wavelength limits of the solution (ν > 0)

wk ∼ −iC1
2νΓ(ν)

π
(−kz)1/2−ν , |kz| � 1 ,

wk ∼ C1

√
2
π

e−i(kz+π
2 ν+π

4 ) , |kz| � 1 .



Background Tensor perturbations Conclusions

Near-Planckian regime: Solution

Mukhanov variable wk ≡ ahk, time variable
z ≡

∫
dτα = τα/(1 + pqα)

∂2
z wk +

(
k2 − 4ν2−1

4z2

)
wk = 0, where ν ≡ 1/2− p/(1 + pqα)

Solution: wk = C1
√
−kz H(1)

ν (−kz) + C2
√
−kz H(2)

ν (−kz)
C2 = 0 (advancing plane wave at small scales)
Large- and short-wavelength limits of the solution (ν > 0)

wk ∼ −iC1
2νΓ(ν)

π
(−kz)1/2−ν , |kz| � 1 ,

wk ∼ C1

√
2
π

e−i(kz+π
2 ν+π

4 ) , |kz| � 1 .



Background Tensor perturbations Conclusions

Near-Planckian regime: Solution

Mukhanov variable wk ≡ ahk, time variable
z ≡

∫
dτα = τα/(1 + pqα)

∂2
z wk +

(
k2 − 4ν2−1

4z2

)
wk = 0, where ν ≡ 1/2− p/(1 + pqα)

Solution: wk = C1
√
−kz H(1)

ν (−kz) + C2
√
−kz H(2)

ν (−kz)

C2 = 0 (advancing plane wave at small scales)
Large- and short-wavelength limits of the solution (ν > 0)

wk ∼ −iC1
2νΓ(ν)

π
(−kz)1/2−ν , |kz| � 1 ,

wk ∼ C1

√
2
π

e−i(kz+π
2 ν+π

4 ) , |kz| � 1 .



Background Tensor perturbations Conclusions

Near-Planckian regime: Solution

Mukhanov variable wk ≡ ahk, time variable
z ≡

∫
dτα = τα/(1 + pqα)

∂2
z wk +

(
k2 − 4ν2−1

4z2

)
wk = 0, where ν ≡ 1/2− p/(1 + pqα)

Solution: wk = C1
√
−kz H(1)

ν (−kz) + C2
√
−kz H(2)

ν (−kz)
C2 = 0 (advancing plane wave at small scales)

Large- and short-wavelength limits of the solution (ν > 0)

wk ∼ −iC1
2νΓ(ν)

π
(−kz)1/2−ν , |kz| � 1 ,

wk ∼ C1

√
2
π

e−i(kz+π
2 ν+π

4 ) , |kz| � 1 .



Background Tensor perturbations Conclusions

Near-Planckian regime: Solution

Mukhanov variable wk ≡ ahk, time variable
z ≡

∫
dτα = τα/(1 + pqα)

∂2
z wk +

(
k2 − 4ν2−1

4z2

)
wk = 0, where ν ≡ 1/2− p/(1 + pqα)

Solution: wk = C1
√
−kz H(1)

ν (−kz) + C2
√
−kz H(2)

ν (−kz)
C2 = 0 (advancing plane wave at small scales)
Large- and short-wavelength limits of the solution (ν > 0)

wk ∼ −iC1
2νΓ(ν)

π
(−kz)1/2−ν , |kz| � 1 ,

wk ∼ C1

√
2
π

e−i(kz+π
2 ν+π

4 ) , |kz| � 1 .



Background Tensor perturbations Conclusions

Near-Planckian regime: Normalization

Constant C1 is determined by choosing the Bunch–Davis
vacuum, wk ∼ e−ikz/

√
2k.

Operator ûk = aĥk = wkak + w∗k a†k obeys

[ûk1 , ∂τ ûk2 ] = 32π`2
Pliαδ(k1, k2) .

Wronskian:
wk∂τ w∗k − w∗k∂τ wk = i(32π`2

Pl)α.

Plugging in the short-scale solution, one gets |C1| =
√

8π2`2
Pl/k.
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Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
k∗ =

√
4ν2−1

2z = H
α

√
1− qα − 1

p .

Well defined only if p > 1/(1− qα). Stronger condition
p > −1/qα > −1 (z flows along the same direction at τ , modes
exit horizon)
Tensor spectrum:

A2
T ≡ Ph

100
≡ k3

200π2a2

∑
+,×

〈
|ûk�H|2

〉 ∣∣∣
k=k∗

∝ H2

α2 ∝ k2(1+p+pqα)/(1+pqα)

Tensor spectral index:

nT ≡
d ln A2

T
d ln k
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= 2(ε+qα)
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|ûk�H|2

〉 ∣∣∣
k=k∗

∝ H2

α2 ∝ k2(1+p+pqα)/(1+pqα)

Tensor spectral index:

nT ≡
d ln A2

T
d ln k

∣∣∣
k=k∗

= 2(ε+qα)
ε+qα−1



Background Tensor perturbations Conclusions

Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
k∗ =

√
4ν2−1

2z = H
α

√
1− qα − 1

p .

Well defined only if p > 1/(1− qα).

Stronger condition
p > −1/qα > −1 (z flows along the same direction at τ , modes
exit horizon)
Tensor spectrum:

A2
T ≡ Ph

100
≡ k3

200π2a2

∑
+,×

〈
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Stochastic background of primordial gravitational
waves

Ωgw =
1

ρcrit

dρgw

d ln f
∝ T(k)2A2

T

nT ≈
1

ln f − ln f0
ln
(

2.29× 1014 h2Ωgw(f )
r

)

Pulsar timing, LIGO, LISA, BBN place strong constraints.
Taking upper bound r < 0.30, from pulsar timing nT . 0.79,
from BBN nT . 0.15.
If r ∼ 10−8, still these bounds are nT < 1.
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Near-Planckian regime: Excluded?

Quasi-de Sitter limit (ε ≈ 0): nT ≈ 2qα/(qα − 1) > 12/5.
Strong blue tilt.
Deep superacceleration (ε � −qα): nT ≈ 2. Strong blue tilt.
Near-Planckian phase might have occurred only at very
early times (unobservably large scales) and for a short
period.
Scale-invariant or red-tilted tensor spectrum achieved in
the interval −1/qα < p . −1/(qα + 1), but could spoil scale
invariance of scalar spectrum.
1: r could be fine tuned to be small but scalar sector not
available.
2: Anomaly cancellation does not happen in scalar sector
in this regime, which may be a sign that perturbation
theory fails to converge.
3: Close to the bounce, power-law evolution may not be a
good approximation. However, a ≈ const.
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Quasi-classical regime: Solution

Mukhanov equation:

∂2
τ wk +cH(α−1)∂τ wk +{(2α−1)k2 +H2[ε−2−c(α−1)]}wk ≈ 0.

Solution perturbative in αc (αc 6= 0; natural choice trivial):

wk = w(0)
k + αcw(1)

k

∂2
τ w(0)

k +
[
k2 +H2(ε− 2)

]
w(0)

k = 0 ,

∂2
τ w(1)

k +
[
k2 +H2(ε− 2)

]
w(1)

k + r(τ) = 0 ,

r(τ) ≡

(√
∆
a

)c [
cH∂τ w(0)

k + (2k2 − cH2)w(0)
k

]
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Quasi-classical regime: Asymptotic solutions

At large scales:

wk�H = C1(1 + αcC2)τ p

At small scales:

w(0)
k�H =

√
16π`2

Pl
k

e−ikτ

wk�H = w(0)
k�H

[
1 + αc

ikτ
cp− 1

(√
∆

τ p

)c]
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Quasi-classical regime: Normalization

Horizon crossing at k∗ = H
√

1− 1
p

C1(k) =

√
16π`2

Pl
k

e−ikτ∗

τ p
∗

≡ C̃1kp−1/2

C2(k) =
ik∗τ∗

cp− 1

(√
∆

τ p
∗

)c

≡ C̃2kcp

Correction term decays in time.
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However, there are caveats to be addressed.
Only nonperturbative formalisms (covariant, δN, separate
universe, etc.) could be trusted (also relevant for anomaly
issue).
Quasi-classical result reliable, but scalar sector still under
inspection.
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