#### Guillermo A. Mena Marugán. IEM, CSIC (Spain)

# HYBRID QUANTIZATION OF THE GOWDY COSMOLOGIES



LQC Workshop. October 2008.

# Motivation

- The loop quantization of homogeneous cosmological models has been studied recently. Besides, a satisfactory Fock quantization of inhomogeneous cosmologies has been achieved: the Gowdy model.
- The Gowdy T<sup>3</sup> model is a natural test bed to incorporate inhomogeneities in Loop Quantum Cosmology.
- The simplest possibility is a hybrid quantization.
- The initial singularity appears in the homogeneous solutions of the model (Bianchi I). How does the inclusion of inhomogeneities affect its quantum mechanical resolution?
- Does the loop quantization of the zero modes suffice to resolve the singularity? (Different from the "BKL" approach).



• Questions in mind are **internal time**, semiclassical behavior, validity of the Fock quantization, perturbative approaches...

#### **Classical system**

- We consider Gowdy T<sup>3</sup> cosmologies with linear polarization.
- The classical metric is (with  $\theta$ ,  $\sigma$ ,  $\delta \in S^1$ ):

$$ds^{2} = e^{\gamma[\phi]} (-dt^{2} + d\theta^{2}) + t^{2} e^{-\phi(t,\theta)} d\sigma^{2} + e^{\phi(t,\theta)} d\delta^{2}.$$

 $\phi(t,\theta) = \alpha + \beta \ln t + \sum_{m} [c_{m} J_{0}(mt) \sin(m\theta + \epsilon_{m}) + d_{m} N_{0}(mt) \sin(m\theta + \epsilon_{m})].$ 

- Generically, t=0 is a curvature singularity.
- Fixing the gauge, except for the zero modes of the  $\theta$ -diffeos and scalar constraints, we get with a suitable field parametrization:

$$ds^{2} = \frac{|p^{1} p^{2} p^{3}|}{4} \left[ e^{\tilde{y}[\xi, p^{1}]} \left( -\underline{N}^{2} dt^{2} + \frac{1}{(p^{1})^{2}} d\theta^{2} \right) + \frac{e^{-\xi/\sqrt{|p^{1}|}}}{(p^{2})^{2}} d\sigma^{2} + \frac{e^{\xi/\sqrt{|p^{1}|}}}{(p^{3})^{2}} d\delta^{2} \right].$$



 $\underline{N}$  is homogeneous and  $\xi$  has no zero mode.

LQC Workshop. Guillermo A. Mena Marugán (P3)

## **Choice of variables**

- The zero modes can be viewed as the degrees of freedom of a Bianchi I model.
- In a diagonal gauge, the corresponding Ashtekar variables are

$$(\tilde{E}^{BI})_{i}^{a} = \frac{p_{i}}{4\pi^{2}}\delta_{i}^{a}, \quad (A^{BI})_{a}^{i} = \frac{c^{i}}{2\pi}\delta_{a}^{i}, \quad \{c^{i}, p_{j}\} = 8\pi G \gamma \delta_{j}^{i}.$$

• Expand the field and its momentum in Fourier modes,  $(\xi_m, P_{\xi}^m)$ , and introduce the variables:

$$(a_m, a_m^*), \quad a_m = \frac{|m|\xi_m + iK^2 P_{\xi}^m}{\sqrt{2|m|}K}, \quad K = \sqrt{\frac{4G}{\pi}}.$$

• The complex structure that is naturally associated with these variables determines a Fock space  $F^{\xi}$ .



• This is the **unique** Fock quantization with a unitary dynamics and a natural implementation of the remaining gauge group.

LQC Workshop. Guillermo A. Mena Marugán (P4)

# **Remaining constraints**

• The diffeomorphisms constraint generates S<sup>1</sup> translations.

$$C_{\theta} = \sum_{m>0} m(a_{m}^{*}a_{m} - a_{-m}^{*}a_{-m}).$$

It does not depend on the zero modes.

• Scalar constraint: Bianchi I plus the inhomogeneous Hamiltonian.

$$C_G := -\left(\frac{C_{BI}}{\gamma^2} + C_{\xi}\right),$$

$$C_{BI} = 2 \frac{c^{1} p_{1} c^{2} p_{2} + c^{1} p_{1} c^{3} p_{3} + c^{2} p_{2} c^{3} p_{3}}{\sqrt{|p_{1} p_{2} p_{3}|}}.$$

$$C_{\xi} = -\frac{4\pi^{3}|p_{1}|}{\sqrt{|p_{1}p_{2}p_{3}|}} \left[ \frac{(c^{2}p_{2} + c^{3}p_{3})^{2}}{16\pi^{2}\gamma^{2}(p_{1})^{2}} \sum |\xi_{m}|^{2} + \sum \left\{ \left| \frac{4G}{\pi} \right|^{2} |P_{\xi}^{m}|^{2} + m^{2}|\xi_{m}|^{2} \right\} \right]$$



LQC Workshop.Guillermo A. Mena Marugán (P5)

## **Bianchi I: representation**

- We call  $\{x^I\} = \{\theta, \sigma, \delta\}$ . The Hilbert space  $H_{kin}^{BI}$  is the tensor product of  $H_{kin}^{(I)} = L^2(\mathbb{R}, d \mu_{Bohr}^I)$ .
- We implement (a possibly modified version of) the proposal chosen by Chiou  $\left(\overline{\mu}_{I}^{-1} \propto \widehat{\sqrt{|p_{I}|}}\right)$ . We change to the  $v_{I}$ -basis.
- Using the standard methods of LQC:

$$\hat{C}_{BI} = \sum_{(I,J,K)} \hat{\Omega}_{I} \hat{\Omega}_{J} \left[ \frac{1}{\sqrt{|p_{K}|}} \right], \qquad \left[ \frac{1}{\sqrt{|p_{I}|}} \right] |v_{I}\rangle = \frac{1}{\sqrt{\gamma} l_{p}} b(v_{I}) |v_{I}\rangle,$$

$$\hat{\Omega}_{I} = a \sqrt{|p_{I}|} \left[ \widehat{\sin(\bar{\mu}_{I}c^{I})} \widehat{sgn(p_{I})} + \widehat{sgn(p_{I})} \widehat{\sin(\bar{\mu}_{I}c^{I})} \right] \sqrt{|p_{I}|}, a = (8\sqrt{3}\pi\gamma l_{p}^{2})^{-1/2}$$

•  $\hat{C}^{BI}$  annihilates all the "zero volume" states: states in the basis  $\{|v_1\rangle \otimes |v_2\rangle \otimes |v_3\rangle\}$  with any  $v_I = 0$ . These states get **decoupled**.



In this sense, the singularity is resolved.

LQC Workshop. Guillermo A. Mena Marugán (P6)

# **Bianchi I: Densitized constraint**

• Restricting to the cylindrical functions and the kinematical Hilbert space  $\bar{H}_{kin}^{(I)}$  without zero volume states, we densitize the constraint:

$$\hat{\tilde{C}}_{BI} = \left[\frac{1}{\sqrt{|p_1 p_2 p_3|}}\right]^{-1/2} \hat{C}_{BI} \left[\frac{1}{\sqrt{|p_1 p_2 p_3|}}\right]^{-1/2} = 2\left(\hat{\Lambda}_1 \hat{\Lambda}_2 + \hat{\Lambda}_1 \hat{\Lambda}_3 + \hat{\Lambda}_2 \hat{\Lambda}_3\right),$$

$$\hat{\Lambda}_{I}|v_{I}\rangle = -\pi i \gamma l_{p}^{2}(f_{+}(v_{I})|v_{I}+2\rangle - f_{-}(v_{I})|v_{I}-2\rangle),$$

$$f_{\pm}(v) = g(v \pm 2) \{ sgn(v \pm 2) + sgn(v) \} g(v), g(v) = \left\| 1 + \frac{1}{v} \right\|^{1/3} - \left| 1 - \frac{1}{v} \right|^{1/3} \right\|^{-1/2}$$

•  $f_+(v_I) (f_-(v_I))$  vanishes in [-2,0] ([0,2]). Then,  $\hat{\Lambda}_I$  does not mix the semilattices  $\mathscr{L}^2_{\pm \epsilon_I} := \{\pm(\epsilon_I + 2n), n \in \mathbb{N}\}, \epsilon_I \in (0,2]$ . The corresponding subspaces  $\bar{H}^{(I)}_{\pm \epsilon_I}$  provide superselection sectors.

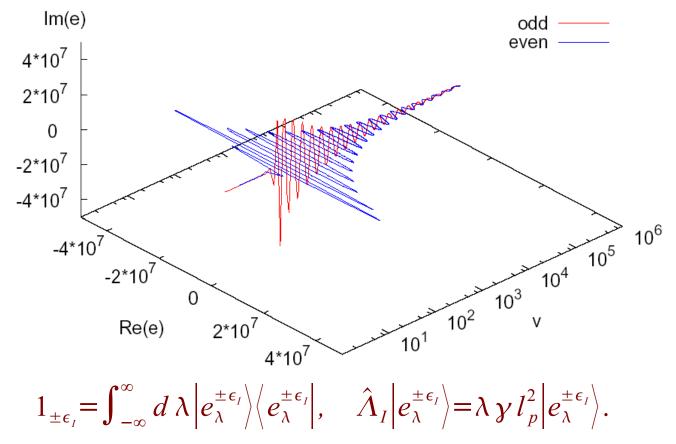


• In this sense, the constraint equation encodes a no-boundary.

LQC Workshop. Guillermo A. Mena Marugán (P7)

# Spectrum and eigenfunctions of $\hat{\Lambda}_I$

- The WDW analog of  $\hat{\Lambda}_I$  would be  $12\pi i \gamma G v_I \frac{\partial}{\partial v_I}$ .
- $\hat{\Lambda}_I$  (with domain the span of the  $v_I$ -states in the semilattice  $\mathscr{L}^2_{\pm \epsilon_I}$ ) is essentially self-adjoint and has absolutely continuous spectrum.





LQC Workshop. Guillermo A. Mena Marugán (P8)

## **Bianchi I: Physical states**

٦

$$\widehat{\widetilde{C}}_{BI} = 2 \left( \widehat{\Lambda}_1 \widehat{\Lambda}_2 + \widehat{\Lambda}_1 \widehat{\Lambda}_3 + \widehat{\Lambda}_2 \widehat{\Lambda}_3 \right).$$

Since  $\hat{\Lambda}_I$  are observables and we know their associated resolution of the identity, it is straightforward to solve the constraint.

• The same results can be obtained with group averaging. Physical states have the form

$$\psi(v_1, v_2, v_3) = \int_{-\infty}^{\infty} d\lambda_2 \int_{-\infty}^{\infty} d\lambda_3 \tilde{\psi}(\lambda_2, \lambda_3) e_{\lambda_1[\lambda]}^{\epsilon_1}(v_1) e_{\lambda_2}^{\epsilon_2}(v_2) e_{\lambda_3}^{\epsilon_3}(v_3)$$
  
with the Hilbert structure  $\tilde{\psi} \in H^{BI} := L^2(\mathbb{R}^2, d\lambda_2 d\lambda_3 / |\lambda_2 + \lambda_3|)$  and  
 $\lambda_1[\lambda] = -\lambda_2 \lambda_3 / (\lambda_2 + \lambda_3).$ 

• A complete set of observables is given by  $\hat{\Lambda}_2, \hat{\Lambda}_3, \hat{v}_2|_{v_1^0}, \hat{v}_3|_{v_1^0},$ for any given section  $v_1^0$ .  $(\hat{v}_2|_{v_1^0})\psi(v_1^0, v_2, v_3) = v_2\psi(v_1^0, v_2, v_3)$ 

$$\Rightarrow \left(\hat{v}_{2}|_{v_{1}^{0}}\right)\tilde{\psi}(\lambda_{2},\lambda_{3}) = \int_{-\infty}^{\infty} d\tilde{\lambda}_{2} \left\langle e_{\lambda_{2}}^{\epsilon_{2}} | v_{2}e_{\tilde{\lambda}_{2}}^{\epsilon_{2}} \right\rangle \tilde{\psi}(\tilde{\lambda}_{2},\lambda_{3}).$$

# Hybrid Gowdy model

- The kinematical Hilbert space is  $H_{kin}^{BI} \otimes F^{\xi}$ .
- The inhomogeneous part  $\hat{C}_{\xi}$  of the constraint annihilates also the zero volume states. Since these decouple, we can restrict ourselves to  $\bar{H}_{kin} := \bar{H}_{kin}^{BI} \otimes F^{\xi}$ .

We then arrive at the densitized constraint:

$$\hat{\tilde{C}}_{G} = -\frac{\hat{\tilde{C}}_{BI}}{\gamma^{2}} - \hat{\tilde{C}}_{\xi}, \qquad -\frac{\hat{\tilde{C}}_{\xi}}{l_{p}^{2}} = \frac{(\hat{\Lambda}_{2} + \hat{\Lambda}_{3})^{2}}{\gamma^{2}} \left[\frac{\widehat{1}}{\sqrt{|p_{1}|}}\right]^{2} \hat{H}_{Inter}^{\xi} + 32 \pi^{2} |\widehat{p_{1}}| \hat{H}_{0}^{\xi},$$

$$\hat{H}_{Inter}^{\xi} := \sum \frac{1}{2|m|} \left( 2 \, \hat{a}_{m}^{\dagger} \hat{a}_{m} + \hat{a}_{m}^{\dagger} \hat{a}_{-m}^{\dagger} + \hat{a}_{m} \hat{a}_{-m} \right), \quad \hat{H}_{0}^{\xi} := \sum |m| \, \hat{a}_{m}^{\dagger} \hat{a}_{m}.$$

• We have represented the variables  $c^{I} p_{I}$  by  $\hat{\Lambda}_{I}$ , like in Bianchi I. Then,  $\hat{\Lambda}_{2}$  and  $\hat{\Lambda}_{3}$  are **observables**, but  $\hat{\Lambda}_{1}$  is not.

# **Densitized constraint**

$$\hat{\tilde{C}}_{G} = -2\left(\hat{\Lambda}_{1}\hat{\Lambda}_{2} + \hat{\Lambda}_{1}\hat{\Lambda}_{3} + \hat{\Lambda}_{2}\hat{\Lambda}_{3}\right) + l_{p}^{2} \left\{ \frac{\left(\hat{\Lambda}_{2} + \hat{\Lambda}_{3}\right)^{2}}{\gamma^{2}} \left[\frac{1}{|p_{1}|}\right] \hat{H}_{Inter}^{\xi} + 32\pi^{2} |\widehat{p_{1}}| \hat{H}_{0}^{\xi} \right\}, \\ \hat{H}_{Inter}^{\xi} := \sum \frac{1}{2|m|} \left(2\hat{a}_{m}^{\dagger}\hat{a}_{m} + \hat{a}_{m}^{\dagger}\hat{a}_{-m}^{\dagger} + \hat{a}_{m}\hat{a}_{-m}\right), \quad \hat{H}_{0}^{\xi} := \sum |m|\hat{a}_{m}^{\dagger}\hat{a}_{m}.$$

- If we view the constraint as an evolution equation,  $p_1$  plays the role of **internal time**.
- Superselection: we restrict to  $\bar{H}_{\epsilon_1}^{(1)} \otimes \bar{H}_{\epsilon_2}^{(2)} \otimes \bar{H}_{\epsilon_3}^{(3)} \otimes F^{\xi}$ .
- We define  $\hat{\tilde{C}}_{G}$  with domain the span of

$$|\langle v_1 \rangle \otimes |v_2 \rangle \otimes |v_3 \rangle \otimes |\langle n_m \rangle| := |v_1, v_2, v_3, \langle n_m \rangle|; v_I \in \mathscr{L}_{\epsilon_I}^2, |\langle n_m \rangle| \in F^{\xi}|.$$

The operator is well-defined and symmetric.

LQC Workshop. Guillermo A. Mena Marugán (P11)

# **Eigenvalue equation: formal solutions**

• The (complex) eigenvalue equation for  $\tilde{\tilde{C}}_{c}$  leads to  $\left\langle \Psi \left| \hat{\tilde{C}}_{G} \right| v_{1}, v_{2}, v_{3} \{n_{m}\} \right\rangle = \rho \gamma^{2} l_{p}^{4} \left\langle \Psi \right| v_{1}, v_{2}, v_{3} \{n_{m}\} \right\rangle, \rho \in \mathbb{C}.$ Substituting  $|\Psi| = \sum_{\nu_1} \int_{\mathbb{R}^2} d\lambda_2 d\lambda_3 \langle \nu_1 | \otimes \langle e_{\lambda_2}^{\epsilon_2} | \otimes \langle e_{\lambda_3}^{\epsilon_3} | \otimes \langle \Psi [\nu_1, \lambda_2, \lambda_3] |$ , we get  $\langle \Psi[\epsilon_1 + 2\mathbf{M}] | \{n_m\} \rangle = \langle \Psi[\epsilon_1] | \sum_{\{r_i\} \cup \{s_i\} \in O(M)} [\Pi_{r_i} F(\epsilon_1 + 2r_i + 2)]$  $\times P \left[ \Pi_{s_i} \hat{H}_{\rho}^{\xi} [\epsilon_1 + 2 s_j] \right] |\{n_m\}\rangle,$  $F(v_1) := \frac{f_{-}(v_1)}{f_{+}(v_1)}, \qquad \hat{H}_{\rho}^{\xi}[v_1] := \frac{l}{2\pi(\lambda_2 + \lambda_3)f_{+}(v_1)}$  $\times \left[ \rho + 2\lambda_2 \lambda_3 - \frac{(\lambda_2 + \lambda_3)^2}{\nu} b^2(v_1) \hat{H}_{Inter}^{\xi} - 2^6 3^{5/6} \pi^3 \gamma |v_1|^{2/3} \hat{H}_0^{\xi} \right].$ 



O(M) is the set of paths from 0 to M with jumps of 1 or 2 steps.  $\{s_j\}$  are the points followed by a jump of 1 step. P denotes path ordering.

LQC Workshop. Guillermo A. Mena Marugán (P12)

# **Observables and physical states**

- Solutions to the constraint correspond to  $\rho = 0$ . They are **determined** by the initial data  $(\Psi[\epsilon_1]]$ .
- If we identify solutions to the constraint with these initial data, observables are operators acting on them.
- A complete set is provided by the observables for Bianchi I and, e.g., the operators representing

$$\{ \{ \xi_m + \xi_{-m}, i\xi_m - i\xi_{-m}, P_{\xi}^m + P_{\xi}^{-m}, iP_{\xi}^m - iP_{\xi}^{-m} \}; m \in \mathbb{N}^+ \}.$$

- With reality conditions we obtain (a Hilbert space equivalent to)  $L^2(\mathbb{R}^2, d\lambda_2 d\lambda_3 / |\lambda_2 + \lambda_3|) \otimes F^{\xi}$ .
- Imposing the S<sup>1</sup>-symmetry we get  $L^2(\mathbb{R}^2, d\lambda_2 d\lambda_3 / |\lambda_2 + \lambda_3|) \otimes F_{phys}^{\xi}$ .
- $F_{phys}^{\xi}$  is the subspace annihilated by  $\hat{C}_{\theta} = \sum_{m>0} m(\hat{a}_{m}^{\dagger}\hat{a}_{m} \hat{a}_{-m}^{\dagger}\hat{a}_{-m}).$





### Conclusions

 By combining the loop quantization of Bianchi I (with compact sections) and the Fock quantization of the Gowdy model, we have constructed a hybrid quantization of these cosmologies in vacuo.

- We have obtained a well-defined constraint operator for the Gowdy model, found the solutions to the constraint and proceeded to determine the physical states and observables.
- The initial singularity is avoided (due to the loop quantization of the **zero modes**) and we get a no-boundary description.
- The physical Hilbert space is (equivalent to) that of the Fock quantization.

