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Purpose of the talk

LQC: an application of Loop Quantum Gravity methods to symmetry
reduced (minisuperspace) models.

Isotropic flat universe with massless scalar field in LQC:
Results for Λ = 0 (A Ashtekar, P Singh, TP gr-qc/0607039):
change of dynamics due to quantum geometric effects.

Existence of large semiclassical (contracting) universe preceding
expanding one.

Bounce at energy density ρ = ρc ≈ 0.82ρPl.

Presented work: Inclusion of the cosmological constant
(preliminary studies in gr-qc/0607039).

Questions:
Are the qualtitative properties similar ?
Is bounce still characterized by ρc ?
What new properties the models with Λ possess ?

Due to distinct mathematical properties of an evolution operator
+ve and −ve Λ have to be investigated separately.
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LQC quantization scheme

Considered model: flat isotropic (FRW) universe
Matter content: massless scalar field

Basic variables:
geometry: Ai

a, Ea
i in isotropic situation reexpressed in terms of

coefficients c, p.
(Gauss and Diffeomprophism constraints automatically satisfied.)

matter: field φ and conjugate momentum pφ.

Quantization method following LQG:

Geometric DOF: triads p and holonomies h raised to operators.
Matter DOF: standard (Schrodinger) quantization.

Kinematical Hilbert space:

Hkin = Hg ⊗Hφ =: L2(R̄Bohr, dµBohr) ⊗ L2(R, dφ)

Basis of Hg: eigenstates of p̂ for convenience labeled by v s.t.

p̂ |v〉 = 2 · 3
1

6πγ sgn(v)|v|
2

3 |v〉

Quantization of Hamiltonian constraint Cgrav + Cmatt = 0: Its

geometric components reexpressed in terms of holonomies

(Thiemann method), next raised to operators.
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Evolution operator

Quantum constraint similar to Klein-Gordon equation:

∂2
φΨ(v, φ) = −ΘΨ(v, φ)

Θ is a difference operator

ΘΨ(v, φ) = C+(v)Ψ(v + 4, φ) + Co(v)Ψ(v, φ) + C−(v)Ψ(v − 4, φ),

Λ enters Co only, approximately acts like v2 potential,

Θ is symmetric on the domain D of finite combinations of |v〉.

System reinterpreted as free one evolving with respect to φ.

Few important details:

No C-symmetry violation interactions ⇒ states symmetric with
respect to reflection Π in v.

Superselection: Domain of v naturally splits onto family of sets
preserved by action of Θ and Π:

Lǫ := {v ∈ R : v = ±ǫ+ 4n, n ∈ Z}.

In consequence Hg = ⊕Hǫ, where Hǫ contains functions

supported on Lǫ only.
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Observables

Left-hand side negatively definite, thus we take only positive part of

Θ. Two sectors: positive and negative frequency. We take the
positive part:

−i∂φΨ(v, φ) =
√

|Θ|Ψ(v, φ)

Dirac observables:

scalar field momentum:

p̂φΨ(v, φ) = −i~∂φΨ(v, φ)

volume at given φ:

|v̂|φΨ(v, φ′) = exp[i
√

|Θ|(φ′ − φ)]|v|Ψ(v, φ)

scalar field energy density at given φ:

ρ̂φ = 1
2 V̂

−1|φ p̂
2
φ V̂

−1|φ

where V̂ −1|φ defined analogously to |v̂|φ.
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Λ < 0

Work by: E Bentivegna, TP

Classically recollapsing system: recollapse when energy density of φ
satisfies: ρφ + Λ/8πG = 0.

Λ acts approximately like +ve v2 potential. Θ is positively definite,
essentially self-adjoint, its spectrum is discrete (Lewandowski,

Kaminski, Szulc arXiv:0709.3120 ).

Normalizable eigenfunctions singled out numerically. Each

normalizable eigenspace 1-dimensional. Basis en(v) of physical

Hilbert space selected out of normalized eigenfunctions.

Physical states: Ψ(v, φ) =
∑

n Ψ̃nen(v) exp[iωn(φ− φo)].

Choice: Gaussian states sharply peaked about ω⋆ = ~−1p⋆
φ and

some large v⋆ for some initial φ = φo

Ψ̃n = exp(−(ωn − ω⋆)2/2σ2)

Dirac observables: p̂φ, |v̂|φ, ρ̂φ.
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Λ < 0: classical trajectory
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Λ < 0: wave function
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Λ < 0: quantum trajectory
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Λ < 0: energy density
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Λ < 0 – results

State remains sharply peaked throughout the evolution.

Expectation values follow classical trajectory till (total) energy density
becomes comparable to ρc. In particular recollapse at the point
predicted by classical theory.

Bounce exactly at ρφ + Λ/8πG = ρc joins two large semiclassical

sectors.

Singularities are resolved - replaced by a quantum bounce.

Resulting evolution is periodic (with period depending on Λ).

Dispersion between cycles:

Separation between eigenvalues approaches constant

ωn − ωn−1 = ∆ω(Λ) +O(ω−2
n ) O(ω−2

n ) ≤ A(∆ω)2

ω2
n

Heuristic (numerically confirmed) limit on spread

δ∆v
v

≤ Ã 1
ω2

δω
ω

Consequence: very slow spread. For Λ ≈ −10−120 and

VMAX ≈ 1MPc3 dispersion grows twice in 1070 cycles.
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Λ > 0

Work by: A Ashtekar, TP

some mathematical aspects: W Kaminski, TP

Classically two distinct classes: ever-expanding and ever-contracting.

In both classes v reaches infinity for finite φ = φo. Solutions
parametrized by proper time end there. However ...

Original domain of v can be compactified.

Classical EOM can be analytically extended. Each solution
extends uniquely through v = ±∞.

Behavior of energy density ρ(φ) (also analytic) shows that

procedure doesn’t add any new regions but identifies v = +∞
with v = −∞.

Extended solutions: at infinity universe transits from expanding to
contracting phase.

On the quantum level: contribution from cosmological constant acts

approximately as ∝ −v2 potential (unbounded from below).
Hamiltonians of such system are usually not (essentially) self-adjoint.
To verify self-adjointness we analyse the deficiency subspaces.
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Λ > 0: classical trajectory
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Λ > 0: self-adjoint extensions

For simplicity we focus on the case ǫ = 0.

Deficiency subspaces K± ⊂ Hg: spaces of normalizable solutions to

〈ϕ±|Θ
⋆ ∓ iI |ψ〉 = 0, ψ ∈ D

found numerically (as solutions to difference equation).

In symmetric sector solutions unique up to global normalization.

dim(K+) = dim(K−) = 1 – domain of Θ has many extensions.

All of them are defined by unitary transformations Uα : K+ → K−:

Dα = {ψ + a(ϕ+ + Uα(ϕ+));ψ ∈ D, a ∈ C}

All Uα are of the form Uαϕ+ = eiαϕ− – 1D family of extensions.

Since D – finite combinations of |v〉 all Ψ ∈ Hphys have the v → ∞

limit of the form a(ϕ+ + Uαϕ+).
Basis of Dα – eigenfunctions with this limit.

Result: All extensions Θα of Θ have discrete spectra.

Physical states have form analogous to ones for Λ < 0. We can
repeat the construction + analysis done for that case.
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Λ > 0: wave function
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Λ > 0: energy density
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Λ > 0 – results

The results are the same for all extensions:

States remain sharply peaked through the evolution.

States follow classical trajectory until total energy density approaches
critical one, when gravity becomes repulsive and state bounces.

Bounce joins deterministically contracting and expanding sectors.

Evolution is nonsingular, bounce replaces singularitites.

For all extensions the expanding universe after reaching infinite

volume (or, equivalently ρ = Λ/8πG) reflects back into contracting
one.

Due to quantum bounce and reflection at infinity we again have cyclic
evolution.

Comment:

Results are analogous for other values of ǫ. For ǫ = 2 one parameter

family of extensions. For ǫ 6= 0, 2 – four parameter family.
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Λ > 0 role of extensions

The choice of extension equivalent to selection of reflective

conditions at |v| = ∞.

Distinct extensions – different phase rotation at reflection.

For disemiclassical states trajectories and dispersions same within
numerical precision.
Reason: Existence of unique analytic extension of classical trajectory.

Bound on Λ: Physical Hilbert space degenerates for Λ > 8πGρc.
Explanation: Residual energy density above upper bound.

Dispersion growth:

∀ ext. separation of ωn approaches uniformity similarly to Λ < 0
case

ωn − ωn−1 = ∆ω(Λ) +O(ω−2)

Consequence: spreadout of semiclassicall state as slow as for

Λ < 0 (c.a. 1070 cycles for dispersions to double).
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Alternative picture of Λ > 0

Work by: W. Kaminski, J. Lewandowski, TP

APS approach: φ used as emergent time, Klein-Gordon like
equation, evolution operator has many s.a. extensions.
But ...

Total Hamiltonian constraint C is essentially self-adjoint. Can find

Hphy via group averaging. How it is related to extensions ?

Result of GA: Hphy is a single Hilbert space containing all the
extensions

Hphy =
∫

dαH̃phy
α

where H̃phy
α unitarily related to Hphy

α

One can use GA to construct observables (analogs of ρ̂φ).

Dynamics not yet analysed ...
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