Effective Constraints

Artur Tsobanjan

work with M. Bojowald, B. Sandhöfer and A. Skirzewski

IGC, Penn State

¹arXiv:0804.3365, submitted to Rev. Math. Phys. $\Box \rightarrow \langle \Box \rangle \wedge \langle \Xi \rangle + \langle \Xi \rangle + \langle \Xi \rangle + \langle \Box \rangle$

Constrained systems

- Classically constraints restrict "physically accessible" region of the phase space Γ_{class}; functions C : Γ_{class} → ℝ, set C = 0.
- Arise naturally from action principle; indicate presence of gauge degrees of freedom.
- Constraints may be solved before quantization, but in some cases gauge freedom plays a crucial role.
- Dirac's prescription: $\hat{C}\psi_{phys} = 0$, clear if $\psi_{phys} \in \mathscr{H}_{kin}$.
- Otherwise construct \mathscr{H}_{phys} equipped with \langle, \rangle_{phys} —non-trivial.
- Is there a simpler way to get quantum corrections?

Main idea

- Supplement Γ_{class} with leading order "quantum parameters" and associated constraints—should be easier than constructing ℋ_{phys}.
- "Quantum parameters"—some functions of expectation values; e.g. $\langle \hat{O}^n \rangle \langle \hat{O} \rangle^n \neq 0$ is a departure from classical behavior.
- Inspiration—geometrical QM where $\langle \hat{O} \rangle$ -s are functions on a symplectic manifold. [e.g. A. Ashtekar, T. Schilling 1997]
- $\bullet\,$ Here focusing on systems with finite-dimensional $\Gamma_{\rm class}$ we:
 - formulate suitable analogue of $\hat{\mathcal{C}}\psi_{\mathrm{phys}}=$ 0 on $\langle \hat{\mathcal{O}}
 angle$ -s
 - through an example show how these lead to quantum corrections.

・ロ> <回> <目> <目> <目> <目> <のQの

Basic assumptions

- Take a quantum system that is well understood in the absence of constraints.
- In particular assume that
 - observables of interest form some (known) associative algebra: for each pair a, b ∈ 𝔄 there is (ab) ∈ 𝔄
 - commutator algebra $[\mathbf{a}, \mathbf{b}] = \mathbf{a}\mathbf{b} \mathbf{b}\mathbf{a}$ is the quantum version of the classical Poisson algebra
 - there is a single constraint $\mathbf{C} \in \mathscr{A}$ (some polynomial in observables with some ordering chosen).
- Instead of vector-states look at complex linear maps α ∈ L(𝔄 → ℂ) satisfying α(𝔅) = 1. (E.g. ρ(Ô) = Tr(Ôρ̂).)

Constraint functions

- First note the natural linear left and right action of \mathscr{A} on the maps
 - left: $(\mathbf{a}\alpha)(\mathbf{b}) = \alpha(\mathbf{a}\mathbf{b})$
 - right: $(\alpha \mathbf{a})(\mathbf{b}) = \alpha(\mathbf{b}\mathbf{a})$
- Substitute Dirac's condition by one of the following
 - $\mathbf{C}\alpha = \mathbf{0}$ implying $\alpha(\mathbf{C}\mathbf{a}) = \mathbf{0} \ \forall \mathbf{a} \in \mathscr{A}$
 - $\alpha \mathbf{C} = \mathbf{0}$ implying $\alpha(\mathbf{aC}) = \mathbf{0} \ \forall \mathbf{a} \in \mathscr{A}$
- In many cases possible to satisfy one, but not both e.g.:
 - $\hat{x}, \hat{p} \in \mathscr{A}$ subject to $[\hat{x}, \hat{p}] = i\hbar$ take $\mathbf{C} = \hat{x}$
 - demand $\hat{x}\alpha = 0$ in particular $\alpha(\hat{x}\hat{p}) = 0$
 - then $(\alpha \hat{x})(\hat{p}) = \alpha(\hat{p}\hat{x}) = \alpha(\hat{x}\hat{p} [\hat{x}, \hat{p}]) = -i\hbar$, hence $\alpha \hat{x} \neq 0$
- Forced to use complex maps!
- Here we pick αC = 0; potentially an infinite number of conditions. (Additional structure may reduce this number dramatically [A. Corichi 2008])

Geometry

- The set of normalized linear maps L(𝔄 → ℂ) forms a complex affine space and hence a (complex) differential manifold—denote Γ.
- Each a ∈ A assigns a function on Γ: ⟨a⟩(α) = α(a) (henceforth simply ⟨a⟩)
 - this assignment is linear $\langle {\bf a} + {\bf b} \rangle = \langle {\bf a} \rangle + \langle {\bf b} \rangle$
 - Each $\alpha \in \Gamma$ is entirely defined by the values of $\langle \mathbf{a} \rangle$ -s
 - a linear basis $\{e_i\}$ of $\mathscr A$ gives a set of coordinate functions $\langle e_i \rangle$
- Γ is equipped with a natural Poisson structure defined by the algebra commutator: $\{\langle \mathbf{a} \rangle, \langle \mathbf{b} \rangle\} := \frac{1}{i\hbar} \langle [\mathbf{a}, \mathbf{b}] \rangle$ (extend using Leibnitz rule)
- Poisson vector fields formally generate invertible (algebra preserving) transformations: $\{\langle \mathbf{a} \rangle, \langle \mathbf{b} \rangle\} = \frac{d}{d\epsilon} \langle \exp(-\frac{\epsilon}{i\hbar} \mathbf{a}) \mathbf{b} \exp(\frac{\epsilon}{i\hbar} \mathbf{a}) \rangle \mid_{\epsilon=0}$

・ロ> <回> <目> <目> <目> <目> <のQの

Gauge flows

- The set of constraint functions $\langle aC \rangle = 0$ defines a smooth submanifold $\Sigma \subset \Gamma$. (Maps satisfying $\alpha C = 0$ form an affine subspace.)
- The constraints are closed under the Poisson bracket (1st class). The associated flows are tangent to Σ (i.e. constraint preserving).
- These are analogues of classical gauge flows—true degrees of freedom are given by gauge invariant functions on Σ.
- A constrained Poisson manifold and a constrained symplectic manifold can be analyzed analogously.
- In particular $\Sigma/(\text{gauge orbits})$ naturally inherits Poisson structure from $\Gamma.$
- A truncation, if needed, should leave us with a 1st class system on a Poisson manifold.

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Constraints on free Newtonian particle

- The following procedure should apply to any polynomial constraint in \mathscr{A} generated by a finite-dimensional Lie algebra.
- Free system: two canonical pairs $\{q, p; t, p_t\}$
- Let \mathscr{A} consist of identity and all ordered polynomials in the canonical variables subject to the canonical commutation relations.
- A point on $\Gamma \cong L(\mathscr{A} \to \mathbb{C})$ is completely determined by the values it assigns to polynomials $\mathbf{q}^k \mathbf{p}^l \mathbf{t}^m \mathbf{p}_t^n$ (reordering adds lower order terms)
- Introduce constraint: $\mathbf{C} = \mathbf{p}_t + \frac{\mathbf{p}^2}{2M}$. Classically—a time-deparameterized version of a free non-relativistic particle.
- Systematically impose constraints order by order: $C_{\mathbf{q}^k \mathbf{p}' \mathbf{t}^m \mathbf{p}_t^n} = \langle \mathbf{q}^k \mathbf{p}' \mathbf{t}^m \mathbf{p}_t^n \mathbf{C} \rangle = 0$ —infinitely many.

Semiclassical reduction

- No approximations used yet—for practical calculations need finite number of equations. Here expand about classical limit.
- To add leading order "quantum parameters" to classical phase space, need functions on Γ that measure "quantumness".
- Moments of observables are non-linear functions on Γ that have a clear notion of order: $\langle (\mathbf{q} \langle \mathbf{q} \rangle)^k (\mathbf{p} \langle \mathbf{p} \rangle)^l (\mathbf{t} \langle \mathbf{t} \rangle)^m (\mathbf{p}_t \langle \mathbf{p}_t \rangle)^n \rangle_{\text{Weyl}}$ for semiclassical states $\propto \hbar^{\frac{1}{2}(k+l+m+n)}$
- Reduce system of constraints and the Poisson structure:
 - recast equations in terms of moments
 - 2) assign appropriate powers of $\hbar^{rac{1}{2}}$
 - I drop all terms of order above N
- This reduction results in a finite number of non-trivial first-class constraints and a closed Poisson structure to order N.

Corrections up to 2nd order

- Degrees of freedom: 4 expectation values a = ⟨a⟩; 4 spreads
 (Δa)² = ⟨(a − a)²⟩ and 6 variances Δ(ab) = ⟨(a − a)(b − b)⟩_{Weyl}
- 5 non-trivial constraints left:

$$\langle \mathbf{C} \rangle = p_t + \frac{p^2}{2M} + \frac{(\Delta p)^2}{2M} = 0; \quad \langle \mathbf{p}\mathbf{C} \rangle = \Delta(pp_t) + \frac{p(\Delta p)^2}{M} = 0; \quad \langle \mathbf{p}_t\mathbf{C} \rangle = (\Delta p_t)^2 + \frac{p\Delta(pp_t)}{M} = 0;$$

$$\langle \mathbf{q}\mathbf{C} \rangle = \Delta(qp_t) + \frac{i\hbar p}{2M} + \frac{p\Delta(qp)}{M} = 0; \quad \langle \mathbf{t}\mathbf{C} \rangle = \frac{p\Delta(pt)}{M} + \frac{\Delta(tp_t) + \frac{i\hbar}{2}}{1} = 0.$$

Eliminating p_t, (Δp_t)², Δ(pp_t), Δ(qp_t), Δ(tp_t) we can write the gauge invariant functions on Σ as:

$$\mathcal{P} = p; \qquad \mathcal{Q} = q - \frac{tp}{M} - \frac{\Delta(tp)}{M}; \quad \Delta(\mathcal{Q}\mathcal{P}) = \Delta(qp) - \Delta(tp) - \frac{t(\Delta p)^2}{M};$$
$$(\Delta \mathcal{P})^2 = (\Delta p)^2; \quad (\Delta \mathcal{Q})^2 = (\Delta q)^2 - \frac{2p\Delta(qt)}{M} + \frac{p^2(\Delta t)^2}{M^2} + \frac{t^2(\Delta p)^2}{M^2} - \frac{2t}{M} \left(\Delta(qp) - \Delta(tp)\right).$$

Poisson algebra as expected for 1 canonical pair: {2, P} = 1;

$$\{(\Delta \mathscr{Q})^2, (\Delta \mathscr{P})^2\} = 4\Delta(\mathscr{Q} \mathscr{P}); \quad \{(\Delta \mathscr{Q})^2, \Delta(\mathscr{Q} \mathscr{P})\} = 2(\Delta \mathscr{Q})^2; \quad \{(\Delta \mathscr{P})^2, \Delta(\mathscr{Q} \mathscr{P})\} = -2(\Delta \mathscr{P})^2, \quad (\Delta \mathscr{P})^2 = -2(\Delta \mathscr{P})^2$$

Gauge fixing

- To identify gauge-invariant variables as observables —enforce relations that would be satisfied by \langle,\rangle_{phys}
 - reality: $\mathscr{P}, \mathscr{Q}, (\Delta \mathscr{P})^2, (\Delta \mathscr{Q})^2, \Delta(\mathscr{Q} \mathscr{P}) \in \mathbb{R}$
 - positivity: $(\Delta \mathscr{P})^2, (\Delta \mathscr{Q})^2 \ge 0$
 - inequality: $(\Delta \mathscr{P})^2 (\Delta \mathscr{Q})^2 (\Delta (\mathscr{QP}))^2 \ge \frac{1}{4}\hbar^2$
- To interpret variables associated with \mathbf{q}, \mathbf{p} as evolving in time $t = \langle \mathbf{t} \rangle$, fix 3 of the gauges: $\Delta(tp) = 0$; $\Delta(qt) = 0$; $(\Delta t)^2 = 0$.
- Inverting gauge-invariant functions recover dynamics:

$$p = \mathscr{P}; \quad q = \mathscr{Q} + \frac{\mathscr{P}}{M}t; \qquad (\Delta p)^2 = (\Delta \mathscr{P})^2;$$
$$(\Delta q)^2 = (\Delta \mathscr{Q})^2 + \frac{2\Delta(\mathscr{Q} \mathscr{P})}{M}t + \frac{(\Delta \mathscr{P})^2}{M}t^2; \quad \Delta(qp) = \Delta(\mathscr{Q} \mathscr{P}) + \frac{\Delta(\mathscr{P})^2}{M}t.$$

• These are the correct equations for a free quantum particle.

One final point

- In this example, once the constraints are imposed and 3 gauges are fixed, the dynamics may be recovered in two ways:
 - As suggested here: by using (t) to express the gauge dependence of variables generated by q, p.
 - **2** Using the remaining gauge flow generated on the constraint surface by $\langle \mathbf{C} \rangle = p_t + \frac{p^2}{2M} + \frac{(\Delta p)^2}{2M}$, i.e. taking Poisson bracket of $\langle \mathbf{C} \rangle$ with gauge dependent variables.
- In the absence of an obvious time variable 2nd method may be used to find a quantum parameter generating evolution.

Summary

- Goal: leading quantum corrections for constrained systems.
- Proceeded by:
 - treating $\Gamma \cong L(\mathscr{A} \to \mathbb{C})$ a Poisson phase-space
 - defining quantum constraints on Γ
 - reducing the system using a semi-classical expansion
 - enforcing reality, positivity, uncertainty on true observables
 - dynamics recovered as gauge correlation
- Advantages: straightforward procedure, solutions should be easy to perturb.
- Difficult to analyze stability of semi-classical approximation.
- Finally: quantum variables as clocks—uses in cosmology?

How can there be flows?

- Intuition: $\mathbf{C} \mid \psi \rangle = 0$ results in $\exp(\epsilon \mathbf{C}) \mid \psi \rangle = \mid \psi \rangle$ no flow!
- Constraint functions fix the action of **C** on the maps from one side—the flows are generated by its action from the other side.

Example 1: operators on a Hilbert space dim(H) = N (𝖉 ≅ U(N))

- suppose we have a vector ${\bf C} \mid \psi \rangle = {\bf 0}$
- any operator of the form ρ = |ψ⟩⟨φ | where ⟨φ | ψ⟩ = 1, gives us a normalized linear map satisfying Tr[(aC)ρ] = 0, ∀a ∈ A
- unless we also have ⟨φ | C = 0, there still is a gauge flow exp(-εC) | ψ⟩⟨φ | exp(εC) =| ψ⟩⟨φ | exp(εC)

• Example 2: canonical pair as differential operators $\hat{x} = x$, $\hat{p} = i\hbar \frac{d}{dx}$

- $\mathbf{C} = \hat{x}$ can be solved by any map of the form $\alpha_f(\hat{A}) = \delta_0[\hat{A}f(x)]$ with normalization f(0) = 1
- $\mathbf{C}\alpha_f = \mathbf{0}$, but $\alpha_f \mathbf{C} = \alpha_{xf} \neq \mathbf{0}$ in general.
- the corresponding flow is $\exp(-\epsilon \mathbf{C})\alpha_f \exp(\epsilon \mathbf{C}) = \alpha_{\exp(\epsilon x)f}$
- Note: functions derived from operators that commute with C are always gauge invariant.