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Introduction

Constrained systems

@ Classically constraints restrict “physically accessible” region of the
phase space [¢ags; functions C : Meass — R, set C = 0.

@ Arise naturally from action principle; indicate presence of gauge
degrees of freedom.

@ Constraints may be solved before quantization, but in some cases
gauge freedom plays a crucial role.

@ Dirac’s prescription: éwphys =0, clear if Ypnys € Hin.
@ Otherwise construct #;nys equipped with (, ) hys—non-trivial.

@ Is there a simpler way to get quantum corrections?
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Introduction

@ Supplement [¢as5 with leading order “quantum parameters” and
associated constraints—should be easier than constructing Jpys.

@ "Quantum parameters’—some functions of expectation values; e.g.
(O") — (O)" # 0 is a departure from classical behavior.

N

@ Inspiration—geometrical QM where (O)-s are functions on a
symplectic manifold. [e.g. A. Ashtekar, T. Schilling 1997]

@ Here focusing on systems with finite-dimensional [ ¢}, We:

o formulate suitable analogue of Ctipnys = 0 on (O)-s
e through an example show how these lead to quantum
corrections.
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General Setup

Basic assumptions

@ Take a quantum system that is well understood in the absence of
constraints.
@ In particular assume that
o observables of interest form some (known) associative algebra:
for each pair a,b € &7 there is (ab) € &
e commutator algebra [a, b] = ab — ba is the quantum version of
the classical Poisson algebra
o there is a single constraint C € &/ (some polynomial in
observables with some ordering chosen).

@ Instead of vector-states look at complex linear maps v € L(&/ — C)
satisfying a(1) = 1. (E.g. p(O) = Tr(0p).)
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Constraint functions

@ First note the natural linear left and right action of &/ on the maps
o left: (aa)(b) = a(ab)
e right: (ca)(b) = a(ba)
Substitute Dirac’s condition by one of the following
e Ca =0 implying o(Ca) =0 Va € &
o aC =0 implying a(aC) =0 Va € &
In many cases possible to satisfy one, but not both e.g.:
e X, p € o subject to [X, p] = ih take C = X
e demand Xa = 0 in particular a(%p) =0
o then (aX)(p) = a(pX) = a(Xp — [X, p]) = —ih, hence ak # 0

Forced to use complex maps!

Here we pick aC = 0; potentially an infinite number of conditions.
(Additional structure may reduce this number dramatically [A. Corichi 2008])



General Setup

Geometry

@ The set of normalized linear maps L(<7 — C) forms a complex
affine space and hence a (complex) differential manifold—denote T.
@ Each a € &7 assigns a function on I': (a)(a) = a(a) (henceforth
simply (a))
o this assignment is linear (a+ b) = (a) + (b)
o Each a €T is entirely defined by the values of (a)-s
o a linear basis {e;} of &7 gives a set of coordinate functions (e;)
@ [ is equipped with a natural Poisson structure defined by the algebra
commutator: {(a), (b)} := 7 ([a,b]) (extend using Leibnitz rule)
@ Poisson vector fields formally generate invertible (algebra preserving)
transformations: {(a), (b)} = < (exp(—=a)bexp(:=a)) |c—o
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General Setup

Gauge flows

@ The set of constraint functions (aC) = 0 defines a smooth
submanifold ¥ C I'. (Maps satisfying aC = 0 form an affine subspace.)

@ The constraints are closed under the Poisson bracket (1st class).
The associated flows are tangent to X (i.e. constraint preserving).

@ These are analogues of classical gauge flows—true degrees of
freedom are given by gauge invariant functions on ¥.

@ A constrained Poisson manifold and a constrained symplectic
manifold can be analyzed analogously.

@ In particular X /(gauge orbits) naturally inherits Poisson structure
from T.

@ A truncation, if needed, should leave us with a 1st class system on a
Poisson manifold.
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Example: Free Newtonian Particle

Constraints on free Newtonian particle

@ The following procedure should apply to any polynomial constraint
in o7 generated by a finite-dimensional Lie algebra.

@ Free system: two canonical pairs {q, p; t,p:}

@ Let &7 consist of identity and all ordered polynomials in the
canonical variables subject to the canonical commutation relations.

@ A pointon T = [(&/ — C) is completely determined by the values it
assigns to polynomials q“p/t™p? (reordering adds lower order terms)

2
@ Introduce constraint: | C = p; + 33; | Classically—a

time-deparameterized version of a free non-relativistic particle.

@ Systematically impose constraints order by order:
Carpltmpr = (q*p't™p"C) = 0 —infinitely many.
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Example: Free Newtonian Particle

Semiclassical reduction

@ No approximations used yet—for practical calculations need finite
number of equations. Here expand about classical limit.

@ To add leading order “quantum parameters” to classical phase
space, need functions on I that measure “quantumness”.

@ Moments of observables are non-linear functions on I that have a
clear notion of order: ((a—(a))"(p — (p))'(t — ())"(Pt — (Pe))") ey
for semiclassical states oc 7z (k+/+m+n)

@ Reduce system of constraints and the Poisson structure:

@ recast equations in terms of moments
. . 1

@ assign appropriate powers of A2

© drop all terms of order above N

@ This reduction results in a finite number of non-trivial first-class
constraints and a closed Poisson structure to order N.
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Corrections up to 2nd order

@ Degrees of freedom: 4 expectation values a = (a); 4 spreads
(Aa)? = ((a — a)?) and 6 variances A(ab) = ((a — a)(b — b))wey1
@ 5 non-trivial constraints left:

2

P
C)=pt+ — +
(C) = pt oM

(aC) = A(gp:) +

(ap)? o B p(Lp)? o B > PA(ppt)
oM 0;  (pC) = A(ppt) + o 0;  (ptC) = (Ape)” + v

ihp  pA(qp) pA(pt)
M

=0;
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@ Eliminating pt, (Ap:)?, A(pp:), A(gp:), A(tp:) we can write the gauge
invariant functions on X as:

P =p;

(a2)? = (Ap)%;

2
2=q- 2 A;;P); A2 ) = Aap) - Awp) — “EPT,
2 2 2 2
(a2 = (ag? - 220 ZIED | LR 2 aan) — atem).

@ Poisson algebra as expected for 1 canonical pair: {2, 2} =1

{(a2), (a2} =

40 (2 P);

{(A2)2,A(22)} =2(02)% {(A2)?, A(22)} = —2LP)°.



Gauge fixing

@ To identify gauge-invariant variables as observables —enforce
relations that would be satisfied by (,)pnys
e reality: 2,2, (A2)?, (A2)? A(22) € R
e positivity: (A2)?,(A2)? >0
e inequality: (A2)(A2)? — (A(22))* > 112

@ To interpret variables associated with g, p as evolving in time
t = (t), fix 3 of the gauges: A(tp) =0; A(qt)=0; (At)2=0.

@ Inverting gauge-invariant functions recover dynamics:

p=P;, q=2+ 2 (Ap)* = (A2)%;
23 s L A(2)?
(Bq)? = (A2)2 4 BE22)  B2Y 20 A(gp) = A(22) + %f-

@ These are the correct equations for a free quantum particle.



Example: Free Newtonian Particle

One final point

@ In this example, once the constraints are imposed and 3 gauges are
fixed, the dynamics may be recovered in two ways:

@ As suggested here: by using (t) to express the gauge
dependence of variables generated by q, p.

@ Using the remaining gauge flow generated on the constraint

surface by (C) = p: + % + (2,’\';,)2, i.e. taking Poisson bracket of

(C) with gauge dependent variables.

@ In the absence of an obvious time variable 2nd method may be used
to find a quantum parameter generating evolution.
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Summary

Summary

Goal: leading quantum corrections for constrained systems.

Proceeded by:

treating I = L(«/ — C) a Poisson phase-space

defining quantum constraints on I

reducing the system using a semi-classical expansion
enforcing reality, positivity, uncertainty on true observables
dynamics recovered as gauge correlation

Advantages: straightforward procedure, solutions should be easy to
perturb.

Difficult to analyze stability of semi-classical approximation.

Finally: quantum variables as clocks—uses in cosmology?
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How can there be flows?

@ Intuition: C | 4¢) = 0 results in exp(eC) | ) =| ¥) — no flow!
@ Constraint functions fix the action of C on the maps from one side—the
flows are generated by its action from the other side.
@ Example 1: operators on a Hilbert space dim(H) = N (< = U(N))
@ suppose we have a vector C | ¢) =0
@ any operator of the form p =| ¥)(¢ | where (¢ | 1) =1, gives us a

normalized linear map satisfying Tr[(aC)p] = 0,Va € &/
@ unless we also have (¢ | C = 0, there still is a gauge flow

exp(—€C) | ) (¢ | exp(eC) =| 1) (¢ | exp(eC)

@ Example 2: canonical pair as differential operators X = x, p = ihd%
o[ Af(x)]

>

o C = & can be solved by any map of the form ar(A) =
with normalization f(0) =1

o Car =0, but arC = axr # 0 in general.

o the corresponding flow is exp(—€C)ar exp(eC) = Qexp(ex)r

@ Note: functions derived from operators that commute with C are always
gauge invariant.
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