Effective Constraints

Artur Tsobanjan

work with M. Bojowald, B. Sandhöfer and A. Skirzewski

IGC, Penn State

${ }^{1}$ arXiv:0804.3365, submitted to Rev. Math. Phys.

Constrained systems

- Classically constraints restrict "physically accessible" region of the phase space $\Gamma_{\text {class }}$; functions $C: \Gamma_{\text {class }} \rightarrow \mathbb{R}$, set $C=0$.
- Arise naturally from action principle; indicate presence of gauge degrees of freedom.
- Constraints may be solved before quantization, but in some cases gauge freedom plays a crucial role.
- Dirac's prescription: $\hat{C} \psi_{\text {phys }}=0$, clear if $\psi_{\text {phys }} \in \mathscr{H}_{\text {kin }}$.
- Otherwise construct $\mathscr{H}_{\text {phys }}$ equipped with $\langle,\rangle_{\text {phys }}$-non-trivial.
- Is there a simpler way to get quantum corrections?

Main idea

- Supplement $\Gamma_{\text {class }}$ with leading order "quantum parameters" and associated constraints-should be easier than constructing $\mathscr{H}_{\text {phys }}$.
- "Quantum parameters"-some functions of expectation values; e.g. $\left\langle\hat{O}^{n}\right\rangle-\langle\hat{O}\rangle^{n} \neq 0$ is a departure from classical behavior.
- Inspiration-geometrical QM where $\langle\hat{O}\rangle$-s are functions on a symplectic manifold. [e.g. A. Ashtekar, T. Schilling 1997]
- Here focusing on systems with finite-dimensional $\Gamma_{\text {class }}$ we:
- formulate suitable analogue of $\hat{C} \psi_{\text {phys }}=0$ on $\langle\hat{O}\rangle$-s
- through an example show how these lead to quantum corrections.

Basic assumptions

- Take a quantum system that is well understood in the absence of constraints.
- In particular assume that
- observables of interest form some (known) associative algebra: for each pair $\mathbf{a}, \mathbf{b} \in \mathscr{A}$ there is $(\mathbf{a b}) \in \mathscr{A}$
- commutator algebra $[\mathbf{a}, \mathbf{b}]=\mathbf{a b}$ - $\mathbf{b a}$ is the quantum version of the classical Poisson algebra
- there is a single constraint $\mathbf{C} \in \mathscr{A}$ (some polynomial in observables with some ordering chosen).
- Instead of vector-states look at complex linear maps $\alpha \in L(\mathscr{A} \rightarrow \mathbb{C})$ satisfying $\alpha(\mathbb{1})=1$. (E.g. $\rho(\hat{O})=\operatorname{Tr}(\hat{O} \hat{\rho})$.)
- First note the natural linear left and right action of \mathscr{A} on the maps
- left: $(\mathbf{a} \alpha)(\mathbf{b})=\alpha(\mathbf{a b})$
- right: $(\alpha \mathbf{a})(\mathbf{b})=\alpha(\mathbf{b a})$
- Substitute Dirac's condition by one of the following
- $\mathbf{C} \alpha=0$ implying $\alpha(\mathbf{C a})=0 \forall \mathbf{a} \in \mathscr{A}$
- $\alpha \mathbf{C}=0$ implying $\alpha(\mathbf{a C})=0 \forall \mathbf{a} \in \mathscr{A}$
- In many cases possible to satisfy one, but not both e.g.:
- $\hat{x}, \hat{p} \in \mathscr{A}$ subject to $[\hat{x}, \hat{p}]=i \hbar$ take $\mathbf{C}=\hat{x}$
- demand $\hat{x} \alpha=0$ in particular $\alpha(\hat{x} \hat{p})=0$
- then $(\alpha \hat{x})(\hat{p})=\alpha(\hat{p} \hat{x})=\alpha(\hat{x} \hat{p}-[\hat{x}, \hat{p}])=-i \hbar$, hence $\alpha \hat{x} \neq 0$
- Forced to use complex maps!
- Here we pick $\alpha \mathbf{C}=0$; potentially an infinite number of conditions. (Additional structure may reduce this number dramatically [A. Corichi 2008])

Geometry

- The set of normalized linear maps $L(\mathscr{A} \rightarrow \mathbb{C})$ forms a complex affine space and hence a (complex) differential manifold-denote Γ.
- Each $\mathbf{a} \in \mathscr{A}$ assigns a function on $\Gamma:\langle\mathbf{a}\rangle(\alpha)=\alpha(\mathbf{a})$ (henceforth simply $\langle\mathbf{a}\rangle$)
- this assignment is linear $\langle\mathbf{a}+\mathbf{b}\rangle=\langle\mathbf{a}\rangle+\langle\mathbf{b}\rangle$
- Each $\alpha \in \Gamma$ is entirely defined by the values of $\langle\mathbf{a}\rangle$-s
- a linear basis $\left\{\mathbf{e}_{i}\right\}$ of \mathscr{A} gives a set of coordinate functions $\left\langle\mathbf{e}_{i}\right\rangle$
- Γ is equipped with a natural Poisson structure defined by the algebra commutator: $\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\}:=\frac{1}{i \hbar}\langle[\mathbf{a}, \mathbf{b}]\rangle$ (extend using Leibnitz rule)
- Poisson vector fields formally generate invertible (algebra preserving) transformations: $\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\}=\left.\frac{d}{d \epsilon}\left\langle\exp \left(-\frac{\epsilon}{i \hbar} \mathbf{a}\right) \mathbf{b} \exp \left(\frac{\epsilon}{i \hbar} \mathbf{a}\right)\right\rangle\right|_{\epsilon=0}$

Gauge flows

- The set of constraint functions $\langle\mathbf{a C}\rangle=0$ defines a smooth submanifold $\Sigma \subset \Gamma$. (Maps satisfying $\alpha \mathbf{C}=0$ form an affine subspace.)
- The constraints are closed under the Poisson bracket (1st class). The associated flows are tangent to Σ (i.e. constraint preserving).
- These are analogues of classical gauge flows-true degrees of freedom are given by gauge invariant functions on Σ.
- A constrained Poisson manifold and a constrained symplectic manifold can be analyzed analogously.
- In particular $\Sigma /$ (gauge orbits) naturally inherits Poisson structure from Γ.
- A truncation, if needed, should leave us with a 1 st class system on a Poisson manifold.

Constraints on free Newtonian particle

- The following procedure should apply to any polynomial constraint in \mathscr{A} generated by a finite-dimensional Lie algebra.
- Free system: two canonical pairs $\left\{\mathbf{q}, \mathbf{p} ; \mathbf{t}, \mathbf{p}_{t}\right\}$
- Let \mathscr{A} consist of identity and all ordered polynomials in the canonical variables subject to the canonical commutation relations.
- A point on $\Gamma \cong L(\mathscr{A} \rightarrow \mathbb{C})$ is completely determined by the values it assigns to polynomials $\mathbf{q}^{k} \mathbf{p}^{\prime} \mathbf{t}^{m} \mathbf{p}_{t}^{n}$ (reordering adds lower order terms)
- Introduce constraint: $\mathbf{C}=\mathbf{p}_{t}+\frac{\mathbf{p}^{2}}{2 M}$. Classically-a time-deparameterized version of a free non-relativistic particle.
- Systematically impose constraints order by order: $C_{\mathbf{q}^{k} \mathbf{p}^{\prime} \mathbf{t}^{m} \mathbf{p}_{t}^{n}}=\left\langle\mathbf{q}^{k} \mathbf{p}^{\prime} \mathbf{t}^{m} \mathbf{p}_{t}^{n} \mathbf{C}\right\rangle=0$-infinitely many.

Semiclassical reduction

- No approximations used yet-for practical calculations need finite number of equations. Here expand about classical limit.
- To add leading order "quantum parameters" to classical phase space, need functions on Γ that measure "quantumness".
- Moments of observables are non-linear functions on Γ that have a clear notion of order: $\left\langle(\mathbf{q}-\langle\mathbf{q}\rangle)^{k}(\mathbf{p}-\langle\mathbf{p}\rangle)^{\prime}(\mathbf{t}-\langle\mathbf{t}\rangle)^{m}\left(\mathbf{p}_{t}-\left\langle\mathbf{p}_{t}\right\rangle\right)^{n}\right\rangle_{\text {Weyl }}$ for semiclassical states $\propto \hbar^{\frac{1}{2}(k+l+m+n)}$
- Reduce system of constraints and the Poisson structure:
(1) recast equations in terms of moments
(2) assign appropriate powers of $\hbar^{\frac{1}{2}}$
(3) drop all terms of order above N
- This reduction results in a finite number of non-trivial first-class constraints and a closed Poisson structure to order N .

Corrections up to 2 nd order

- Degrees of freedom: 4 expectation values $a=\langle\mathbf{a}\rangle ; 4$ spreads $(\Delta a)^{2}=\left\langle(\mathbf{a}-a)^{2}\right\rangle$ and 6 variances $\Delta(a b)=\langle(\mathbf{a}-a)(\mathbf{b}-b)\rangle_{\text {Weyl }}$
- 5 non-trivial constraints left:

$$
\begin{aligned}
& \langle\mathbf{C}\rangle=p_{t}+\frac{p^{2}}{2 M}+\frac{(\Delta p)^{2}}{2 M}=0 ; \quad\langle\mathbf{p C}\rangle=\Delta\left(p p_{t}\right)+\frac{p(\Delta p)^{2}}{M}=0 ; \quad\left\langle\mathbf{p}_{t} \mathbf{C}\right\rangle=\left(\Delta p_{t}\right)^{2}+\frac{p \Delta\left(p p_{t}\right)}{M}=0 \\
& \langle\mathbf{q C}\rangle=\Delta\left(q p_{t}\right)+\frac{i \hbar p}{2 M}+\frac{p \Delta(q p)}{M}=0 ; \quad\langle\mathbf{t C}\rangle=\frac{p \Delta(p t)}{M}+\Delta\left(t p_{t}\right)+\frac{i \hbar}{2}=0
\end{aligned}
$$

- Eliminating $p_{t},\left(\Delta p_{t}\right)^{2}, \Delta\left(p p_{t}\right), \Delta\left(q p_{t}\right), \Delta\left(t p_{t}\right)$ we can write the gauge invariant functions on Σ as:

$$
\begin{aligned}
\mathscr{P}=p ; & \mathscr{Q}=q-\frac{t p}{M}-\frac{\Delta(t p)}{M} ; \quad \Delta(\mathscr{Q} \mathscr{P})=\Delta(q p)-\Delta(t p)-\frac{t(\Delta p)^{2}}{M} \\
(\Delta \mathscr{P})^{2}=(\Delta p)^{2} ; & (\Delta \mathscr{Q})^{2}=(\Delta q)^{2}-\frac{2 p \Delta(q t)}{M}+\frac{p^{2}(\Delta t)^{2}}{M^{2}}+\frac{t^{2}(\Delta p)^{2}}{M^{2}}-\frac{2 t}{M}(\Delta(q p)-\Delta(t p))
\end{aligned}
$$

- Poisson algebra as expected for 1 canonical pair: $\{\mathscr{Q}, \mathscr{P}\}=1$;

$$
\left\{(\Delta \mathscr{Q})^{2},(\Delta \mathscr{P})^{2}\right\}=4 \Delta(\mathscr{Q} \mathscr{P}) ; \quad\left\{(\Delta \mathscr{Q})^{2}, \Delta(\mathscr{Q} \mathscr{P})\right\}=2(\Delta \mathscr{Q})^{2} ; \quad\left\{(\Delta \mathscr{P})^{2}, \Delta(\mathscr{Q} \mathscr{P})\right\}=-2(\Delta \mathscr{P})^{2}
$$

Gauge fixing

- To identify gauge-invariant variables as observables -enforce relations that would be satisfied by $\langle,\rangle_{\text {phys }}$
- reality: $\mathscr{P}, \mathscr{Q},(\Delta \mathscr{P})^{2},(\Delta \mathscr{Q})^{2}, \Delta(\mathscr{Q}) \in \mathbb{R}$
- positivity: $(\Delta \mathscr{P})^{2},(\Delta \mathscr{Q})^{2} \geq 0$
- inequality: $(\Delta \mathscr{P})^{2}(\Delta \mathscr{Q})^{2}-(\Delta(\mathscr{Q P}))^{2} \geq \frac{1}{4} \hbar^{2}$
- To interpret variables associated with \mathbf{q}, \mathbf{p} as evolving in time $t=\langle\mathbf{t}\rangle$, fix 3 of the gauges: $\Delta(t p)=0 ; \quad \Delta(q t)=0 ; \quad(\Delta t)^{2}=0$.
- Inverting gauge-invariant functions recover dynamics:

$$
\begin{array}{cl}
p=\mathscr{P} ; \quad q=\mathscr{Q}+\frac{\mathscr{P}}{M} t ; \quad & (\Delta p)^{2}=(\Delta \mathscr{P})^{2} ; \\
(\Delta q)^{2}=(\Delta \mathscr{Q})^{2}+\frac{2 \Delta(\mathscr{P} \mathscr{P})}{M} t+\frac{(\Delta \mathscr{P})^{2}}{M} t^{2} ; & \Delta(q p)=\Delta(\mathscr{P} \mathscr{P})+\frac{\Delta(\mathscr{P})^{2}}{M} t .
\end{array}
$$

- These are the correct equations for a free quantum particle.

One final point

- In this example, once the constraints are imposed and 3 gauges are fixed, the dynamics may be recovered in two ways:
(1) As suggested here: by using $\langle\mathbf{t}\rangle$ to express the gauge dependence of variables generated by \mathbf{q}, \mathbf{p}.
(2) Using the remaining gauge flow generated on the constraint surface by $\langle\mathbf{C}\rangle=p_{t}+\frac{p^{2}}{2 M}+\frac{(\Delta P)^{2}}{2 M}$, i.e. taking Poisson bracket of $\langle\mathbf{C}\rangle$ with gauge dependent variables.
- In the absence of an obvious time variable 2nd method may be used to find a quantum parameter generating evolution.

Summary

- Goal: leading quantum corrections for constrained systems.
- Proceeded by:
- treating $\Gamma \cong L(\mathscr{A} \rightarrow \mathbb{C})$ a Poisson phase-space
- defining quantum constraints on Γ
- reducing the system using a semi-classical expansion
- enforcing reality, positivity, uncertainty on true observables
- dynamics recovered as gauge correlation
- Advantages: straightforward procedure, solutions should be easy to perturb.
- Difficult to analyze stability of semi-classical approximation.
- Finally: quantum variables as clocks-uses in cosmology?
- Intuition: $\mathbf{C}|\psi\rangle=0$ results in $\exp (\epsilon \mathbf{C})|\psi\rangle=|\psi\rangle$ - no flow!
- Constraint functions fix the action of \mathbf{C} on the maps from one side-the flows are generated by its action from the other side.
- Example 1: operators on a Hilbert space $\operatorname{dim}(H)=N \quad(\mathscr{A} \cong U(N))$
- suppose we have a vector $\mathbf{C}|\psi\rangle=0$
- any operator of the form $\rho=|\psi\rangle\langle\phi|$ where $\langle\phi \mid \psi\rangle=1$, gives us a normalized linear map satisfying $\operatorname{Tr}[(\mathbf{a C}) \rho]=0, \forall \mathbf{a} \in \mathscr{A}$
- unless we also have $\langle\phi| \mathbf{C}=0$, there still is a gauge flow $\exp (-\epsilon \mathbf{C})|\psi\rangle\langle\phi| \exp (\epsilon \mathbf{C})=|\psi\rangle\langle\phi| \exp (\epsilon \mathbf{C})$
- Example 2: canonical pair as differential operators $\hat{x}=x, \hat{p}=i \hbar \frac{d}{d x}$
- $\mathbf{C}=\hat{x}$ can be solved by any map of the form $\alpha_{f}(\hat{A})=\delta_{0}[\hat{A} f(x)]$ with normalization $f(0)=1$
- $\mathbf{C} \alpha_{f}=0$, but $\alpha_{f} \mathbf{C}=\alpha_{x f} \neq 0$ in general.
- the corresponding flow is $\exp (-\epsilon \mathbf{C}) \alpha_{f} \exp (\epsilon \mathbf{C})=\alpha_{\exp (\epsilon x) f}$
- Note: functions derived from operators that commute with \mathbf{C} are always gauge invariant.

