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Constrained systems

Classically constraints restrict “physically accessible” region of the
phase space Γclass; functions C : Γclass → R, set C = 0.

Arise naturally from action principle; indicate presence of gauge
degrees of freedom.

Constraints may be solved before quantization, but in some cases
gauge freedom plays a crucial role.

Dirac’s prescription: Ĉψphys = 0, clear if ψphys ∈Hkin.

Otherwise construct Hphys equipped with 〈, 〉phys—non-trivial.

Is there a simpler way to get quantum corrections?
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Main idea

Supplement Γclass with leading order “quantum parameters” and
associated constraints—should be easier than constructing Hphys.

“Quantum parameters”—some functions of expectation values; e.g.
〈Ôn〉 − 〈Ô〉n 6= 0 is a departure from classical behavior.

Inspiration—geometrical QM where 〈Ô〉-s are functions on a
symplectic manifold. [e.g. A. Ashtekar, T. Schilling 1997]

Here focusing on systems with finite-dimensional Γclass we:

formulate suitable analogue of Ĉψphys = 0 on 〈Ô〉-s
through an example show how these lead to quantum
corrections.
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Basic assumptions

Take a quantum system that is well understood in the absence of
constraints.

In particular assume that

observables of interest form some (known) associative algebra:
for each pair a,b ∈ A there is (ab) ∈ A
commutator algebra [a,b] = ab− ba is the quantum version of
the classical Poisson algebra
there is a single constraint C ∈ A (some polynomial in
observables with some ordering chosen).

Instead of vector-states look at complex linear maps α ∈ L(A → C)
satisfying α(1) = 1. (E.g. ρ(Ô) = Tr(Ôρ̂).)
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Constraint functions

First note the natural linear left and right action of A on the maps

left: (aα)(b) = α(ab)
right: (αa)(b) = α(ba)

Substitute Dirac’s condition by one of the following

Cα = 0 implying α(Ca) = 0 ∀a ∈ A
αC = 0 implying α(aC) = 0 ∀a ∈ A

In many cases possible to satisfy one, but not both e.g.:

x̂ , p̂ ∈ A subject to [x̂ , p̂] = i~ take C = x̂
demand x̂α = 0 in particular α(x̂ p̂) = 0
then (αx̂)(p̂) = α(p̂x̂) = α(x̂ p̂ − [x̂ , p̂]) = −i~, hence αx̂ 6= 0

Forced to use complex maps!

Here we pick αC = 0; potentially an infinite number of conditions.
(Additional structure may reduce this number dramatically [A. Corichi 2008])
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Geometry

The set of normalized linear maps L(A → C) forms a complex
affine space and hence a (complex) differential manifold—denote Γ.

Each a ∈ A assigns a function on Γ: 〈a〉(α) = α(a) (henceforth
simply 〈a〉)

this assignment is linear 〈a + b〉 = 〈a〉+ 〈b〉
Each α ∈ Γ is entirely defined by the values of 〈a〉-s
a linear basis {ei} of A gives a set of coordinate functions 〈ei 〉

Γ is equipped with a natural Poisson structure defined by the algebra
commutator: {〈a〉, 〈b〉} := 1

i~ 〈[a,b]〉 (extend using Leibnitz rule)

Poisson vector fields formally generate invertible (algebra preserving)
transformations: {〈a〉, 〈b〉} = d

dε 〈exp(− ε
i~ a)b exp( ε

i~ a)〉 |ε=0
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Gauge flows

The set of constraint functions 〈aC〉 = 0 defines a smooth
submanifold Σ ⊂ Γ. (Maps satisfying αC = 0 form an affine subspace.)

The constraints are closed under the Poisson bracket (1st class).
The associated flows are tangent to Σ (i.e. constraint preserving).

These are analogues of classical gauge flows—true degrees of
freedom are given by gauge invariant functions on Σ.

A constrained Poisson manifold and a constrained symplectic
manifold can be analyzed analogously.

In particular Σ/(gauge orbits) naturally inherits Poisson structure
from Γ.

A truncation, if needed, should leave us with a 1st class system on a
Poisson manifold.
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Constraints on free Newtonian particle

The following procedure should apply to any polynomial constraint
in A generated by a finite-dimensional Lie algebra.

Free system: two canonical pairs {q,p; t,pt}
Let A consist of identity and all ordered polynomials in the
canonical variables subject to the canonical commutation relations.

A point on Γ ∼= L(A → C) is completely determined by the values it
assigns to polynomials qkpltmpn

t (reordering adds lower order terms)

Introduce constraint: C = pt + p2

2M . Classically—a

time-deparameterized version of a free non-relativistic particle.

Systematically impose constraints order by order:
Cqk pl tmpn

t
= 〈qkpltmpn

t C〉 = 0 —infinitely many.
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Semiclassical reduction

No approximations used yet—for practical calculations need finite
number of equations. Here expand about classical limit.

To add leading order “quantum parameters” to classical phase
space, need functions on Γ that measure “quantumness”.

Moments of observables are non-linear functions on Γ that have a
clear notion of order:

〈
(q− 〈q〉)k(p− 〈p〉)l(t− 〈t〉)m(pt − 〈pt〉)n

〉
Weyl

for semiclassical states ∝ ~ 1
2 (k+l+m+n)

Reduce system of constraints and the Poisson structure:

1 recast equations in terms of moments
2 assign appropriate powers of ~ 1

2

3 drop all terms of order above N

This reduction results in a finite number of non-trivial first-class
constraints and a closed Poisson structure to order N.
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Corrections up to 2nd order

Degrees of freedom: 4 expectation values a = 〈a〉; 4 spreads

(∆a)2 = 〈(a− a)2〉 and 6 variances ∆(ab) = 〈(a− a)(b− b)〉Weyl

5 non-trivial constraints left:

〈C〉 = pt +
p2

2M
+

(∆p)2

2M
= 0; 〈pC〉 = ∆(ppt ) +

p(∆p)2

M
= 0; 〈pt C〉 = (∆pt )2 +

p∆(ppt )

M
= 0;

〈qC〉 = ∆(qpt ) +
i~p

2M
+

p∆(qp)

M
= 0; 〈tC〉 =

p∆(pt)

M
+ ∆(tpt ) +

i~
2

= 0.

Eliminating pt , (∆pt)
2,∆(ppt),∆(qpt),∆(tpt) we can write the gauge

invariant functions on Σ as:

P = p; Q = q −
tp

M
−

∆(tp)

M
; ∆(QP) = ∆(qp)− ∆(tp)−

t(∆p)2

M
;

(∆P)2 = (∆p)2; (∆Q)2 = (∆q)2 −
2p∆(qt)

M
+

p2(∆t)2

M2
+

t2(∆p)2

M2
−

2t

M
(∆(qp)− ∆(tp)) .

Poisson algebra as expected for 1 canonical pair: {Q,P} = 1;

{(∆Q)2
, (∆P)2} = 4∆(QP); {(∆Q)2

,∆(QP)} = 2(∆Q)2; {(∆P)2
,∆(QP)} = −2(∆P)2

.



Gauge fixing

To identify gauge-invariant variables as observables —enforce
relations that would be satisfied by 〈, 〉phys

reality: P,Q, (∆P)2, (∆Q)2,∆(QP) ∈ R
positivity: (∆P)2, (∆Q)2 ≥ 0
inequality: (∆P)2(∆Q)2 − (∆(QP))2 ≥ 1

4
~2

To interpret variables associated with q,p as evolving in time
t = 〈t〉, fix 3 of the gauges: ∆(tp) = 0; ∆(qt) = 0; (∆t)2 = 0.

Inverting gauge-invariant functions recover dynamics:

p = P; q = Q + P
M

t; (∆p)2 = (∆P)2;

(∆q)2 = (∆Q)2 + 2∆(QP)
M

t + (∆P)2

M
t2; ∆(qp) = ∆(QP) +

∆(P)2

M
t.

These are the correct equations for a free quantum particle.
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One final point

In this example, once the constraints are imposed and 3 gauges are
fixed, the dynamics may be recovered in two ways:

1 As suggested here: by using 〈t〉 to express the gauge
dependence of variables generated by q,p.

2 Using the remaining gauge flow generated on the constraint

surface by 〈C〉 = pt + p2

2M
+ (∆p)2

2M
, i.e. taking Poisson bracket of

〈C〉 with gauge dependent variables.

In the absence of an obvious time variable 2nd method may be used
to find a quantum parameter generating evolution.
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Summary

Goal: leading quantum corrections for constrained systems.

Proceeded by:

treating Γ ∼= L(A → C) a Poisson phase-space
defining quantum constraints on Γ
reducing the system using a semi-classical expansion
enforcing reality, positivity, uncertainty on true observables
dynamics recovered as gauge correlation

Advantages: straightforward procedure, solutions should be easy to
perturb.

Difficult to analyze stability of semi-classical approximation.

Finally: quantum variables as clocks—uses in cosmology?
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How can there be flows?

Intuition: C | ψ〉 = 0 results in exp(εC) | ψ〉 =| ψ〉 — no flow!

Constraint functions fix the action of C on the maps from one side—the
flows are generated by its action from the other side.

Example 1: operators on a Hilbert space dim(H) = N (A ∼= U(N))

suppose we have a vector C | ψ〉 = 0
any operator of the form ρ =| ψ〉〈φ | where 〈φ | ψ〉 = 1, gives us a
normalized linear map satisfying Tr [(aC)ρ] = 0, ∀a ∈ A
unless we also have 〈φ | C = 0, there still is a gauge flow
exp(−εC) | ψ〉〈φ | exp(εC) =| ψ〉〈φ | exp(εC)

Example 2: canonical pair as differential operators x̂ = x , p̂ = i~ d
dx

C = x̂ can be solved by any map of the form αf (Â) = δ0[Âf (x)]
with normalization f (0) = 1
Cαf = 0, but αf C = αxf 6= 0 in general.
the corresponding flow is exp(−εC)αf exp(εC) = αexp(εx)f

Note: functions derived from operators that commute with C are always
gauge invariant.
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