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Motivation

Loop quantum cosmology has been very successful. The big bang
singularity has been resolved in homogeneous and isotropic
cosmologies and numerical simulations have shown that there is a
bounce when the energy density reaches Planck scales. These results
persist

with a cosmological constant Λ,

in closed universes.

The next step: Anisotropies. The Bianchi I model is a relatively
simple model that incorporates anisotropies.

In addition, according to the BKL conjecture, Bianchi I space-times
are particularly interesting as cosmological singularities are
approached.

E. Wilson-Ewing (Penn State) Bianchi I and Loop Quantum Cosmology October 23, 2008 3 / 18



Motivation

Loop quantum cosmology has been very successful. The big bang
singularity has been resolved in homogeneous and isotropic
cosmologies and numerical simulations have shown that there is a
bounce when the energy density reaches Planck scales. These results
persist

with a cosmological constant Λ,

in closed universes.

The next step: Anisotropies. The Bianchi I model is a relatively
simple model that incorporates anisotropies.

In addition, according to the BKL conjecture, Bianchi I space-times
are particularly interesting as cosmological singularities are
approached.

E. Wilson-Ewing (Penn State) Bianchi I and Loop Quantum Cosmology October 23, 2008 3 / 18



Preliminaries: The Bianchi I Space-time

As in all homogeneous and non-compact spaces, we must restrict all
integrations to a fiducial cubical cell V to avoid infinities. We now
introduce a triad oea

i and co-triad oωi
a adapted to the cell.

Due to the symmetries of Bianchi I, the densitized triad and Ashtekar
connection are given by

E a
i = piV

−2/3
o

√
oqoea

i and Ai
a = c iV−1/3

o
oωi

a.

These are related to the variables in the metric

ds2 = −N2dt2 + a2
1dx2

1 + a2
2dx2

2 + a2
3dx2

3 ,

as follows:
p1 ∝ a2a3 and c1 ∝ ȧ1/N .
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The Hamiltonian Constraint

Choosing the matter field to be a massless scalar field and taking the
symmetries of Bianchi I space-times into account, the Hamiltonian
constraint is given by

CH =

∫
V

[
E a

i E b
j

16πGγ2
εij

kF
k
ab +

p2
φ

2

]
,

and, in terms of pi and ci , it is

CH =

∫
V

[
−1

8πGγ2
(p1p2c1c2 + p1p3c1c3 + p2p3c2c3) +

p2
φ

2

]
.

Finally, the only nonzero Poisson bracket is

{ci , pj} = 8πGγδij .
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Operators

In order to obtain the quantum theory, we must promote the
variables to operators. This is easily done for pi ,

p̂1|p1, p2, p3〉 = p1|p1, p2, p3〉,

but it is more difficult for ci as there is no operator corresponding to
the connection in LQG. However, since there do exist operators
corresponding to holonomies, it is possible to obtain an operator for
F k

ab which is motivated by the classical relationship

F k
ab = −2 lim

Ar�→0
Tr

(
h�ij

− 1ij

Ar�
τ k

)
oωi

a
oωj

b.

However, it is impossible to take the limit of the area going to zero in
the quantum theory as the area eigenvalues are discrete. To properly
understand what to do, we must consider the relationship between
LQG and LQC.

E. Wilson-Ewing (Penn State) Bianchi I and Loop Quantum Cosmology October 23, 2008 6 / 18



Relationship Between LQG and LQC: Heuristics

This is the fiducial cell
and the field lines
crossing through it. Since
the area of a surface is
determined by the field
lines crossing through it,
the minimal nonzero area
∆ will be given by a
surface which is crossed
by only one field line.
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Constructing the Operator F̂ k
ab

The holonomy around a square in the 1− 2 plane is given by

h�12 = h
(µ̄2)
2

−1
h

(µ̄1)
1

−1
h

(µ̄2)
2 h

(µ̄1)
1 .

There are N3 plaquettes
on this side of the cube,
each with a physical area
of ∆, the minimum area
eigenvalue in LQC.

The physical area of this side of the cube is given by p3.

⇒ p3 = N3∆.
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The Choice of µ̄i

According to the fiducial
metric, the area enclosed
by the holonomy is
µ̄1µ̄2V

2/3
o . It is also given

by V
2/3
o /N3.

⇒ µ̄1µ̄2 =
1

N3
=

∆

p3
.

µ̄1µ̄2 =
1

N3
=

∆

p3
, µ̄2µ̄3 =

1

N1
=

∆

p1
, µ̄3µ̄1 =

1

N2
=

∆

p2
,

⇒ µ̄1 =

√
p1∆

p2p3
, µ̄2 =

√
p2∆

p3p1
, µ̄3 =

√
p3∆

p1p2
.
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The Hamiltonian Constraint for Bianchi I

Calculating the field strength from the holonomy around the minimal
area loop as prescribed in the previous slides, we find that the
quantum Hamiltonian constraint operator, ignoring factor ordering
ambiguities, is given by

C(q)
H =

∫
V

[
−p1p2p3

8πGγ2∆
(sin µ̄1c1 sin µ̄2c2 + sin µ̄1c1 sin µ̄3c3

+ sin µ̄2c2 sin µ̄3c3) +
p2

φ

2

]
.

The factor ordering choice is not straightforward since, in addition to
pi not commuting with sin µ̄ici , sin µ̄ici does not commute with
sin µ̄jcj .
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Determining the Hamiltonian Constraint Operator

To solve the factor ordering problem, we order each term in the
gravitational part of the constraint symmetrically:

√
v sin(µ̄ici)v sin(µ̄jcj)

√
v +

√
v sin(µ̄jcj)v sin(µ̄ici)

√
v ,

where v = 2
√

p1p2p3. We now expand each sin µ̄ici term into
complex exponentials and we need to determine the action of
each term of the constraint on a state.

This is not a straightforward calculation as each exponential is
of the form exp[

√
pi/pjpk∂pi

]. Introducing λi =
√

p
i
, this

expression simplifies to exp[(1/λjλk)∂λi
] and we find that the

action of the e i µ̄ici operator is, for example,

e i µ̄1c1Ψ(λ1, λ2, λ3) = Ψ

(
λ1

(
v − 2

v

)
, λ2, λ3

)
.

E. Wilson-Ewing (Penn State) Bianchi I and Loop Quantum Cosmology October 23, 2008 11 / 18



Determining the Hamiltonian Constraint Operator

To solve the factor ordering problem, we order each term in the
gravitational part of the constraint symmetrically:

√
v sin(µ̄ici)v sin(µ̄jcj)

√
v +

√
v sin(µ̄jcj)v sin(µ̄ici)

√
v ,

where v = 2
√

p1p2p3. We now expand each sin µ̄ici term into
complex exponentials and we need to determine the action of
each term of the constraint on a state.

This is not a straightforward calculation as each exponential is
of the form exp[

√
pi/pjpk∂pi

]. Introducing λi =
√

p
i
, this

expression simplifies to exp[(1/λjλk)∂λi
] and we find that the

action of the e i µ̄ici operator is, for example,

e i µ̄1c1Ψ(λ1, λ2, λ3) = Ψ

(
λ1

(
v − 2

v

)
, λ2, λ3

)
.

E. Wilson-Ewing (Penn State) Bianchi I and Loop Quantum Cosmology October 23, 2008 11 / 18



Quantum Dynamics for Bianchi I Space-times

Combining all of the terms, we obtain a difference equation from the
Hamiltonian constraint operator describing the quantum dynamics:

∂2
φΨ(λ1, λ2, v ; φ) =

πG

8

√
v

h
(v + 2)

√
v + 4 F+

4 (λ1, λ2, v ; φ)− (v + 2)
√

v F+
0 (λ1, λ2, v ; φ)

− (v − 2)
√

v F−0 (λ1, λ2, v ; φ) + (v − 2)
√

v − 4 F−4 (λ1, λ2, v ; φ)
i
;

where
F±4 (λ1, λ2, v ; φ) = Ψ

„
v ± 4

v ± 2
· λ1,

v ± 2

v
· λ2, v ± 4; φ

«
+ Ψ

„
v ± 4

v ± 2
· λ1, λ2, v ± 4; φ

«
+ Ψ

„
v ± 2

v
· λ1,

v ± 4

v ± 2
· λ2, v ± 4; φ

«
+ Ψ

„
v ± 2

v
· λ1, λ2, v ± 4; φ

«
+ Ψ

„
λ1,

v ± 2

v
· λ2, v ± 4; φ

«
+ Ψ

„
λ1,

v ± 4

v ± 2
· λ2, v ± 4; φ

«
;

F±0 (λ1, λ2, v ; φ) = Ψ

„
v ± 2

v
· λ1,

v

v ± 2
· λ2, v ; φ

«
+ Ψ

„
v ± 2

v
· λ1, λ2, v ; φ

«
+ Ψ

„
v

v ± 2
· λ1,

v ± 2

u
· λ2, v ; φ

«
+ Ψ

„
v

v ± 2
· λ1, λ2, v ; φ

«
+ Ψ

„
λ1,

v

v ± 2
· λ2, v ; φ

«
+ Ψ

„
λ1,

v ± 2

v
· λ2, v ; φ

«
.
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Effective Equations [Chiou, Vandersloot]

Why?

The full Hamiltonian constraint operator is very complicated and
detailed numerical simulations will be necessary to understand
the full dynamics.

The effective equations were an excellent approximation to the
full dynamics in the isotropic case, even at the bounce.

Effective equations are relatively easy to solve and will hopefully be
as accurate as they were for FRW space-times.

The effective equations are derived from the quantum Hamiltonian
constraint C(q)

H by taking the time derivatives of pi and ci by
calculating their Poisson brackets with the constraint.
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Effective Equations: Somewhat Isotropic

[Vandersloot]
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Effective Equations: Anisotropic

[Vandersloot]
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Projection of the Dynamics to FRW

Finally, it is possible to project the full dynamics of the Hamiltonian
constraint operator onto the isotropic (FRW) subspace. The idea is
to average over the anisotropies (λi) while keeping the isotropic
component (v) constant. To do this, we introduce

χ(v ; φ) =
∑
λ1,λ2

Ψ(λ1, λ2, v ; φ).

Summing over λ1, λ2 in the Bianchi I Hamiltonian operator, we find

∂2
φχ(v ; φ) =3πG

[
(v + 2)

√
v(v + 4)χ(v + 4; φ)− 2v 2χ(v ; φ)

+ (v − 2)
√

v(v − 4)χ(v − 4; φ)
]
.

Modulo factor ordering choices, this is the quantum Hamiltonian
constraint operator for FRW space-times.
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Embedding vs. Projection

It must be pointed out that it is impossible to embed FRW states in
the Bianchi I Hilbert space. It is possible to construct an isotropic
state when the wavefunction only has support where λ1 = λ2 = λ3,
but when the state is evolved it will not remain isotropic.

It seems that one should average over degrees of freedom to obtain a
more symmetric state rather than to try to embed the symmetric
state in the larger Hilbert space.
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Conclusion

We have identified a heuristic relation between loop quantum
gravity and loop quantum cosmology which we have used to
determine the choice of µ̄i .

We have a well-defined Hamiltonian constraint operator for
Bianchi I space-times.

There exist effective equations describing the quantum corrected
dynamics of system.

We can average over the anisotropies of the Bianchi I model and
obtain the Hamiltonian constraint operator for FRW space-times.
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