Fedora GNU/Linux; $\[MTEX 2\epsilon\]$; xfig

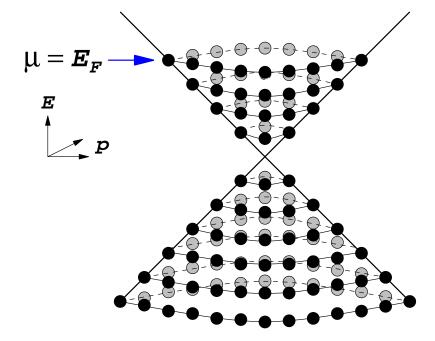
Quark matter in neutron stars

Mark Alford

Washington University Saint Louis, USA

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP review)

Conjectured QCD phase diagram



heavy ion collisions: chiral critical point and first-order line compact stars: color superconducting quark matter core

Cooper pairing in quark matter: color superconductivity

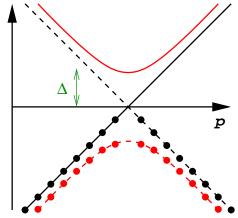
At sufficiently high density and low temperature, there is a Fermi sea of almost free quarks.

Any **attractive** quark-quark interaction causes pairing instability of the Fermi surface: BCS mechanism of superconductivity.

$$F = E - \mu N \qquad \frac{dF}{dN} = 0$$

QCD quark-quark interaction is attractive in color-antisymmetric channel:

- single gluon exchange
- instanton interaction
- strong coupling: count flux tubes
- confinement is attraction


BCS in quark matter: Ivanenko and Kurdgelaidze, Lett. Nuovo Cim. IIS1 13 (1969).

Physical consequences of Cooper pairing

Changes low energy excitations, affecting *transport properties*.

- spontaneous breaking of global symmetries: Goldstone bosons, massless degrees of freedom that dominate low energy behavior.
 E.g. light pions, superfluidity.
- spontaneous breaking of local (gauged) symmetries: massive gauge bosons, exclusion of magnetic fields (Meissner effect).
- create a gap in fermion spectrum.

Adding a fermion of momentum \vec{p} near the Fermi surface disrupts the condensate in that mode, i.e. breaks the Cooper pair with momenta p and -p, costing energy Δ .

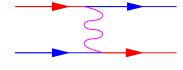
Color superconducting phases

Quark Cooper pair: $\langle q_{ia}^{\alpha} q_{jb}^{\beta} \rangle$

color $\alpha, \beta = r, g, b$ flavor i, j = u, d, sspin $a, b = \uparrow, \downarrow$

Each possible BCS pairing pattern P is an 18×18 color-flavor-spin matrix

$$\langle q_{ia}^{\alpha} q_{jb}^{\beta} \rangle_{1PI} = \Delta_P P_{ij\,ab}^{\alpha\beta}$$


The attractive channel is:

color antisymmetric [most attractive] spin antisymmetric [isotropic] \Rightarrow flavor antisymmetric

So we expect pairing between *different flavors*.

Calculating properties of high-density quark matter

- **Lattice**: "Sign problem"—negative probabilities.
 - **<u>SUSY</u>**: Statistics crucial to quark Fermi surface.
- large N_c : Large corrections. (Also gravity dual theories.)
 - **<u>pert</u>**: Applicable far beyond nuclear density. Neglects confinement and instantons.
 - **NJL**: Model, applicable at low density. Follows from instanton liquid model.

<u>EFT</u>: Effective field theory for lightest degrees of freedom. "Parameterization of our ignorance": assume a phase, guess coefficients of interaction terms (or match to pert theory), obtain phenomenology.

Calculations using NJL or weak-coupling QCD

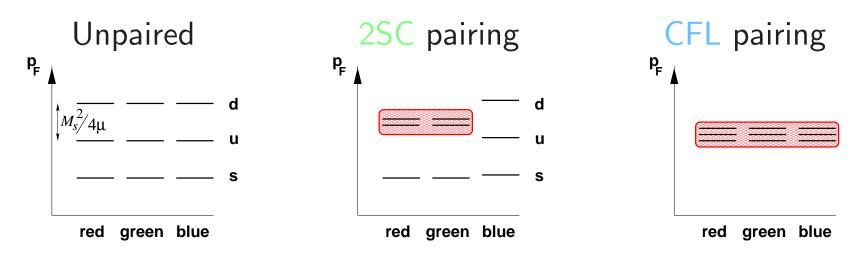
Guess a color-flavor-spin pairing pattern P; to obtain gap Δ_P , calculate free energy Ω (mean-field approx typically), minimize with respect to Δ_P and impose color and electric neutrality

$$\frac{\partial \Omega}{\partial \Delta_P} = 0 \qquad \frac{\partial \Omega}{\partial \mu_i} = 0$$

The pattern with the lowest $\Omega(\Delta_P)$ wins!

- 1. Weak-coupling methods. First-principles calculations direct from QCD Lagrangian, valid in the asymptotic regime, currently $\mu\gtrsim 10^6$ MeV.
- 2. Nambu–Jona-Lasinio models, ie quarks with four-fermion coupling based on instanton vertex, single gluon exchange, etc. This is a semi-quantitative guide to physics in the compact star regime $\mu \sim 400$ MeV, not a systematic approximation to QCD.

NJL gives $\Delta \sim 10\!-\!100$ MeV at $\mu \sim 400$ MeV.


The real world: M_s and neutrality

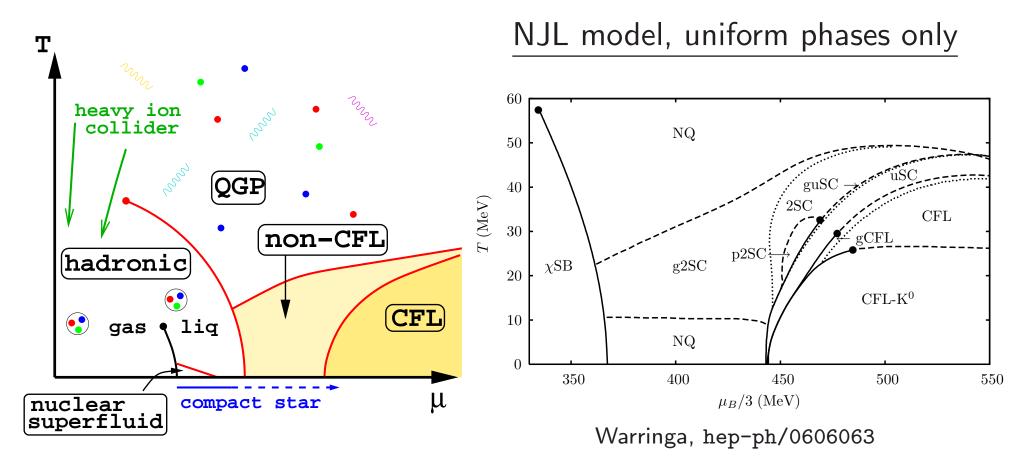
In the real world (ie neutron star cores) there are three complications.

- 1. Strange quark mass is not infinite nor zero, but intermediate. It depends on density, and ranges between about 500 MeV in the vacuum and about 100 MeV at high density.
- 2. Neutrality requirement. Bulk quark matter must be neutral with respect to all gauge charges: color and electromagnetism.
- Weak interaction equilibration. In a compact star there is time for weak interactions to proceed: neutrinos escape and flavor is not conserved.

So quark matter in a compact star might be CFL, or something else: kaon-condensed CFL, 2SC, 1SC, crystalline,...

Cooper pairing vs. the strange quark mass

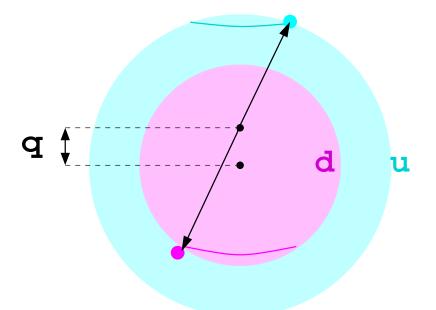
CFL: Color-flavor-locked phase, favored at the highest densities.


$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \delta_i^{\alpha} \delta_j^{\beta} - \delta_j^{\alpha} \delta_i^{\beta} = \epsilon^{\alpha \beta N} \epsilon_{ijN}$$

breaks chiral symmetry by a new mechanism: $\langle qq \rangle$ instead of $\langle \bar{q}q \rangle$. 2SC: Two-flavor pairing phase. May occur at intermediate densities.

$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \epsilon^{\alpha \beta 3} \epsilon_{ij3} \sim (\mathbf{r}g - g\mathbf{r})(ud - du)$$

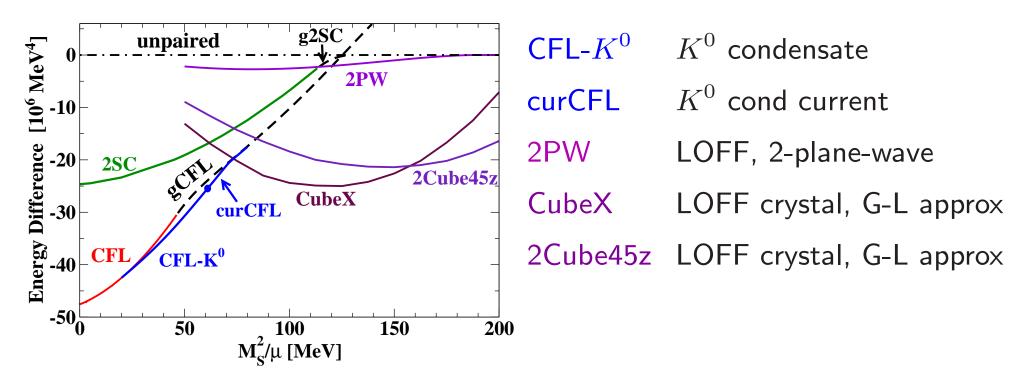
or: Exotic non-BCS pairing: LOFF (crystalline phase), p-wave meson condensates, single-flavor pairing (color-spin locking, \sim liq ³He-B).


Phases of quark matter, again

But there are also non-uniform phases, such as the crystalline ("LOFF" / "FFLO") phase. (Alford, Bowers, Rajagopal, hep-ph/0008208)

Crystalline (LOFF) color superconductivity

When *s*-wave pairing between different flavors is stressed to near the breaking point, it may be favorable to make pairs with a net momentum, so each flavor can be close to its Fermi surface.


This yields a plane-wave condensate $\Delta(\mathbf{x}) = \Delta_0 \exp(2i\mathbf{q} \cdot \mathbf{x})$.

Two plane waves: $\Delta(\mathbf{x}) = \Delta_0 \cos(2\mathbf{q} \cdot \mathbf{x})$

With three flavors one can combine many plane waves to get crystal structures such as BCC (Rajagopal and Sharma hep-ph/0605316).

Free energy comparison of phases

Assuming $\Delta_{\rm CFL} = 25$ MeV.

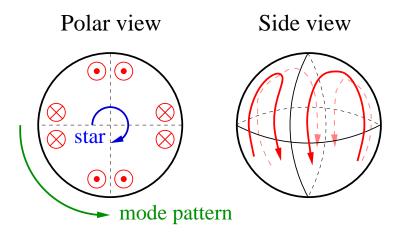
(Alford, Rajagopal, Schäfer, Schmitt, arXiv:0709.4635)

Curves for CubeX and 2Cube45z use G-L approx far from its area of validity: favored phase at $M_s^2 \sim 4\mu\Delta$ remains uncertain.

Signatures of color superconductivity in compact stars

Pairing energy {affects Equation of state . Hard to detect. (Alford, Braby, Paris, Reddy, nucl-th/0411016)

Gaps in quark spectra and <u>Goldstone bosons</u>

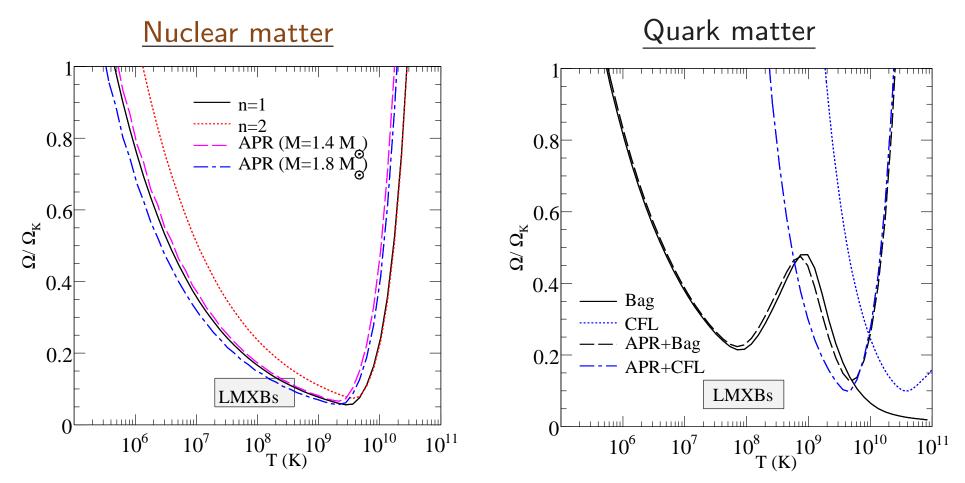

{affect Transport properties : emissivity, heat capacity, viscosity (shear, bulk), conductivity (electrical, thermal)...

1. Gravitational waves: r-mode instability, shear and bulk viscosity

- 2. Glitches and crystalline ("LOFF") pairing
- 3. Cooling by neutrino emission, neutrino pulse at birth

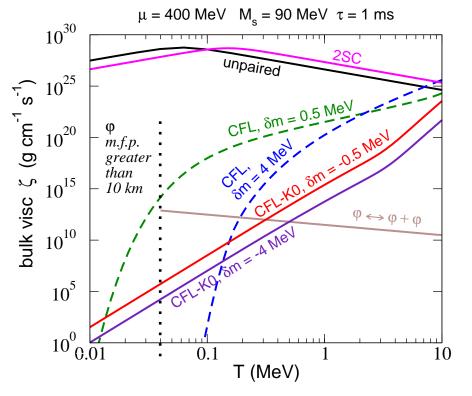
r-modes: gravitational spin-down of compact stars

An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.



The unstable *r*-mode can spin the star down very quickly, in days to years (Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom astro-ph/0101136).

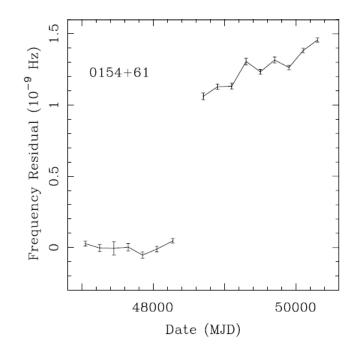
So if we see a star spinning quickly, we can infer that the interior viscosity must be high enough to damp the r-modes.


Constraints from r-modes

Regions above curves are forbidden because viscosity is too low to hold back the r-modes.

(Jaikumar, Rupak, Steiner arXiv:0806.1005)

Bulk viscosity of uniform quark matter phases

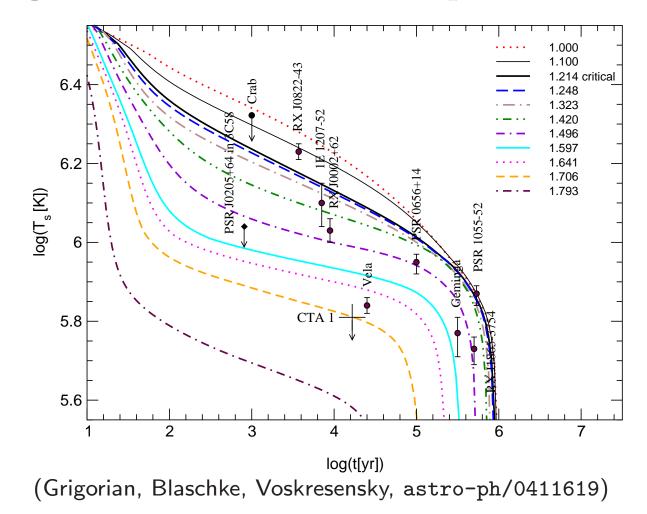

 $\begin{array}{l} \delta m \text{ is the kaon mass gap} \\ \delta m > 0 \text{: } \mathsf{CFL} \\ \delta m < 0 \text{: } \mathsf{CFL}\text{-}K^0 \end{array}$

Alford, Schmitt, nucl-th/0608019; Alford, Braby, Reddy, Schäfer, nucl-th/0701067; Manuel, Llanes-Estrada, arXiv:0705.3909; Alford, Braby, Schmitt, arXiv:0806.0285

- Unpaired and 2SC have the largest bulk viscosity, because they have unpaired modes at Fermi surface (large phase space).
- K^0 density $\sim \exp(-\delta\mu/T)$ drops rapidly for $T \lesssim \delta\mu/10$.
- $\delta\mu = m_{K^0} M_s^2/(2\mu)$ could be anything from negative (kaon condensation) to ~ 10 MeV.
- Superfluid modes ("phonons") alone contribute some bulk viscosity.

Rigidity of quark matter: glitches and grav. waves

Glitch: star's rotation rate suddenly increases. Thought to be due to transfer of ang mom from core to crust as superfluid vortices unpin from some rigid structure in the star.



Conventional picture: pinning occurs in "inner crust" where neutron superfluid interpenetrates a lattice of nuclei, with shear modulus $\nu \sim 10^{-4}$ - 10^{-2} MeV/fm³.

Alternative scenario: pinning occurs in quark matter core in LOFF phase: superfluid and rigid crystal, shear modulus $\nu \sim 0.5$ -20 MeV/fm³. (Mannarelli, Rajagopal, Sharma hep-ph/0702021)

Open questions: pinning force, angular momentum transport time.

Cooling of a neutron star with quark matter core

With 2-flavor color superconductivity, and additional weak pairing of the blue quarks. Can accomodate data with masses ranging from $1.1~M_{\odot}$ to $1.7~M_{\odot}$.

Looking to the future

- Neutron-star phenomenology of color superconducting quark matter:
 - suprathermal bulk viscosity of quark matter phases (r-mode)
 - detailed analysis of $r\mbox{-mode}$ profiles in hybrid star
 - heat capacity, conductivity and emissivity (neutrino cooling)
 - structure: nuclear-quark interface (gravitational waves?)
 - crystalline phase (glitches) (gravitational waves?)
 - CFL: vortices but no flux tubes
- More general questions:
 - magnetic instability of gapless phases
 - better weak-coupling calculations, include vertex corrections
 - go beyond mean-field, include fluctuations
 - solve the sign problem and do lattice QCD at high density.