cooling neutron star crusts

Edward Brown

outline

- motivation
- crust nuclear processes
- cooling crusts

From hydrostatic equilibrium, $dP/dr = -\rho g$, the mass above an isobar is

$$\Delta M \approx \frac{P}{g} 4\pi R^{2}$$

$$\approx 0.05 \ M_{\odot} \left(\frac{P}{\text{MeV fm}^{-3}}\right),$$
and the thickness is
$$H_{P} = \frac{P}{\rho g} \sim 1 \text{ km}.$$
outer core: noe
inner core: noe
inne

Neutron star primary Artwork courtesy T. Piro, UC-Berkeley

≈ solar mass star secondary
 in a short-period (minutes
 to hours) orbit

Each H atom accreted releases

$$E_{\rm grav} \approx \frac{GMm_{\rm H}}{R} \approx 200 \,{\rm MeV}.$$

Critical accretion rate: balance radiation, gravitational force to obtain *Eddington lu-minosity*

$$L_{\rm Edd} = \frac{4\pi G M m_H c}{\sigma_{\rm T}}.$$

This corresponds to a mass accretion rate of

$$\dot{M} \approx 10^{-8} \ M_{\odot} \,\mathrm{yr}^{-1}$$
.

Tauris & van den Heuvel

age

P_{orb}

Mass transfer cycle of a LMXB

•0.4 Gyr mass-transfer (LMXB) phase•0.2 Msun mass accumulated

LMXBs replace their original crust

crust reactions important for...

explosive H, He burning

ashes of H-He burning

accretion-induced heating

Consider the symmetry term in the mass formula,

$$\frac{E}{A} = -a_V + a_S A^{-1/3} + a_A \left(\frac{N-Z}{N+Z}\right)^2 + a_C \frac{Z^2}{A^{4/3}}.$$

Minimize the Gibbs energy including the electron contribution $Y_e \mu_e$ to find

$$Y_e \approx \frac{1}{2} - \frac{\mu_e}{8a_A}$$

This is equivalent to demanding that $\mu_e = \mu_n - \mu_p$.

electron capture reactions, outer crust

mountains made by variations in composition (Bildsten 98, Ushomirsky et al. 00)

Gupta et al. 07

fig. from Cackett et al. '06

- RXTE monitoring observations discovered quasi-persistent transients
- Rutledge et al. '02 suggested looking for thermal relaxation of crust during quiescence
- observations (Wijnands, Cackett) detect this cooling

Time in days since January 1, 1996

2000

1000

what can we learn from cooling transients?

Rutledge et al. '02,, Shternin et al. '07, Brown & Cumming '09

- core temperature
 - interpretation of neutrino cooling requires knowing the time-averaged *dM/dt*
- thermal timescale of crust
 - combination of conductivity, crust thickness, specific heat
- distribution of heat sources in the crust

crust models

solve thermal evolution equation on fixed hydrostatic grid

$$\frac{\partial}{\partial t} (Te^{\phi/c^{2}}) = e^{2\phi/c^{2}} \frac{\epsilon_{nuc} - \epsilon_{v}}{C} - \frac{1}{4\pi r^{2} \rho C(1+z)} \frac{\partial}{\partial r} (Le^{2\phi/c^{2}})$$

$$Le^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$Ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2} K e^{\phi/c^{2}}}{1+z} \frac{\partial}{\partial r} (Te^{\phi/c^{2}}),$$

$$ue^{2\phi/c^{2}} = -\frac{4\pi r^{2}$$

Core temperature during outburst, recurrence cycle (1H1905)

thermal profile, amorphous crust

constraints on Q_{imp}

- use approximate model in Markov Chain Monte Carlo
 - *Q*_{imp} < 10
 - agrees with Shternin et al. '08
 - degenerate with gravity, accretion rate
 - crust thickness (Lattimer et al. '94)

$$\tau \propto \left(\frac{R^2}{GM}\right)^2 \left(1 - \frac{2GM}{Rc^2}\right)^{1/2}$$

crust impurities

Reactions post-neutron drip; Gupta et al. 08

superfluid n in inner crust

- If crust *n* are not superfluid
- greater C_P lengthens diffusion timescale

Ushomirsky & Rutledge '01, Shternin et al. '07, Brown & Cumming '09

summary

- observations of neutron star transients provide information on core temperature, crust conductivity & thickness, and crust heating
 - consistent with regular lattice with low Q_{imp} in inner crust
 - do nuclear processes in the inner force low Q_{imp}? does it follow that all neutron stars have identical inner crusts?
 - implications for raising mountains in the crust (Bildsten 98, Ushomirsky 00, Haskell 06)
- much progress is being made on modeling the composition from photosphere to core