## Searching for Binary

 Neutron Star
## Coalescences in LIGO

L. Cadonati (UMass Amherst)<br>For the LIGO Scientific and Virgo Collaborations

Probing Neutron Stars with Gravitational Waves PSU - June I9, 2009


LSG)

## Binary Systems

## PSR1913+16 Hulse-Taylor



Neutron Star Binary System

- separated by $10^{6}$ miles
$\cdot \mathrm{m}_{\mathrm{I}}=\mathrm{I} .4 \mathrm{M}_{\odot} \mathrm{m}_{2}=\mathrm{I} .36 \mathrm{M}_{\odot} \quad \varepsilon=0.6 \mathrm{I} 7$


## Exact match to general relativity

- spiral in by $3 \mathrm{~mm} /$ orbit
- shortening of orbital period
- indirect evidence for gravitational waves
- Gravitational waves carry away energy and angular momentum. Orbit will continue decay
- In ~300 million years, the "inspiral" will accelerate, and the neutron stars coalesce
- Gravitational wave emission will be strongest near the end



## Compact Binary Coalescences

## Compact Binary Coalescences



## Compact Binary Coalescences

## Inspiral



## Compact Binary Coalescences



# Compact Binary Coalescences 



## Compact Binary Coalescence Searches

Templated search: cross-correlate data with thousands of templates (matched filtering)


Inspiral chirp: amplitude and duration depend on the masses and spins.
$D_{\text {eff }}=$ effective distance, depends on the physical distance $r$ and on orientation of the binary system; $D_{\text {eff }}>r$

## Templates

In-band signal duration depends on total mass

waveforms from non-spinning compact binaries, calculated in frequency domain with stationary-phase approximation (SPA)

Newtonian order in amplitude, second PN in phase, extended until the Schwarzchild innermost stable circular orbit (ISCO)

## Finding "Triggers"




## Matched Filtering

Data

$$
\tilde{d}(f)=\tilde{n}(f)+\tilde{s}(f)
$$



## Noise spectral density

## $S_{n}(f)$ <br> 

Template $\tilde{h}(f)$


$$
z=\langle d \mid h\rangle=4 \int_{0}^{\infty} \frac{\tilde{d}(f)^{*} \tilde{h}(f)}{S_{n}(f)} d f
$$

Template normalization:

$$
\begin{aligned}
& \text { normalization: } \\
& \sigma^{2}=\langle h \mid h\rangle=4 \int_{0}^{\infty} \frac{\tilde{h}(f) * \tilde{h}(f)}{S_{n}(f)} d f
\end{aligned}
$$

## SNR

$$
\rho=\frac{|z|}{\sigma}
$$

## LIGO Noise Evolution



## Binary Neutron Stars (BNS): a Measure of Performance

The inspiral waveform for BNS is known analytically (post-Newtonian approximations). We can translate strain amplitude into (effective) distance.


Range: distance of a 1.4-1.4 M binary, averaged over orientation/polarization Predicted rate for S5: 1/3 years (most optimistic), 1/100 years (most likely)

# Reach for Binary Neutron Stars 



Milky Way (8.5 kpc)
Andromeda (700 kpc)

Virgo Cluster (I5 Mpc)

Sept 2002
March 2003
2005-2007
[ ~ I galaxy ]
[ $\sim 2$ galaxies ]
[ $\sim 10^{3}$ galaxies ]

> 1 light year $=9.5 \times 10^{12} \mathrm{~km}$
> $1 \mathrm{pc}=30.8 \times 10^{12} \mathrm{~km}=3.26$ light years

## Challenges:

I. Need to search over a wide parameter space

- Binary components mass from I to 20 M 。
- Cover spin space
- Search I year of data (~ 20TB)

2. Detector data is non-gaussian

- false alarms


## Searching the Parameter Space



Place a grid of templates such that no more than 3\% of the signal is lost

Define a metric on the parameter space
$\frac{<h(\mathbf{x}) \mid h(\mathbf{x}+\mathbf{d x})>}{|h(\mathbf{x})||h(\mathbf{x}+\mathbf{d x})|}=1-g_{a b}(\mathbf{x}) d x^{a} d x^{b}$


## Dealing with Non-Stationary Noise



## $\chi^{2}$ test and effective SNR



Divide template into $p$ bands, compute $z_{1}(t)$ in each band

$$
\chi^{2}(t)=p \sum_{l=1}^{p}\left\|z_{l}(t)-z(t) / p\right\|^{2}
$$

$$
\rho_{\mathrm{eff}}^{2}=\frac{\rho^{2}}{\sqrt{\left(\frac{\chi^{2}}{2 p-2}\right)\left(1+\frac{\rho^{2}}{250}\right)}},
$$

Injected Chirp (SNR = 9.2)



Spurious Event (SNR = 8.7)




## Coincidence

Require at least two detectors, "similar" parameters (according to the template metric)

- Reduce false alarms due to environmental/detector noise
- Naturally account for correlations between parameters by using metric to determine coincidence window

$$
\rho_{\mathrm{c}}^{2}=\sum_{i=1}^{N} \rho_{\mathrm{eff}, i}^{2}
$$

$$
\tau_{0}=\frac{5}{256 \pi f_{L} \eta}\left(\pi M f_{L}\right)^{-5 / 3}, \quad \tau_{3}=\frac{1}{8 f_{L} \eta}\left(\pi M f_{L}\right)^{-2 / 3}
$$

## Background


time-slide data from different detectors 100 times, to estimate false alarms / accidentals

## Detection Statistics



S4 run -- PRD 77 (2008) 062002

H1H2L1 Observation Time


## Results

Analyzed data from first I8 months of S5 (arXiv:0901:0302, 0905:3710) * No GW candidates: set upper limits

* Binary coalescence rate in a galaxy follows approximately the star formation rate, or blue light luminosity. If $N S$ is $I .35 M_{\odot}$ and $B H$ is $5.0 M_{\odot}, 90 \%$ CL upper limits are:
- BNS rate < $1.4 \times 10^{-2} / \mathrm{L}_{10} /$ year
- BBH rate $<7.3 \times 10^{-4} / \mathrm{L}_{10} /$ year
- BHNS rate $<3.6 \times 10^{-3} / \mathrm{L}_{10} /$ year

$$
\begin{gathered}
\mathrm{L}_{10}=10^{10} \mathrm{~L}_{\odot, \mathrm{B}} \\
\text { (Milky Way }=1.7 \mathrm{~L}_{10} \text { ) }
\end{gathered}
$$

These results are I to 2 orders of magnitude above optimistic astrophysical predictions, $\sim 3$ orders of magnitude above best estimates.

| Component Masses <br> $\left(M_{\odot}\right)$ | $1.35 / 1.35$ | $5.0 / 5.0$ | $5.0 / 1.35$ |
| :---: | :---: | :---: | :---: |
| $D_{\text {horizon }(\mathrm{Mpc})}$ | $\sim 30$ | $\sim 100$ | $\sim 60$ |
| Cumulative Luminosity <br> $\left(L_{10}\right)$ | 490 | 11000 | 2100 |
| Non-spinning Upper <br> Limit $\left(\mathrm{yr}^{-1} L_{10}^{-1}\right)$ | $1.4 \times 10^{-2}$ | $7.3 \times 10^{-4}$ | $3.6 \times 10^{-3}$ |
| Spinning Upper Limit <br> $\left(\mathrm{yr}^{-1} L_{10}^{-1}\right)$ | - | $9.0 \times 10^{-4}$ | $4.4 \times 10^{-3}$ |

## $\mathrm{m}_{1}=\mathrm{m}_{2}$

$$
m_{I}=I .35 M_{\odot}
$$



$$
L_{10}=10^{10} \mathrm{~L}_{\odot, B} \quad\left(\text { Milky Way }=1.7 \mathrm{~L}_{10}\right)
$$


arXiv:0905.3710

## "High" mass

## $\mathrm{BH}-\mathrm{BH}$ and $\mathrm{BH}-\mathrm{NS}$

total mass (25-100) M ${ }_{\odot}$ component mass (I-99) $M_{\odot}$

* Short signals: merger and ringdown in LIGO band.
* Rate uncertainty: $\sim 0.0$ I-I/MWEG/Myr
* Reach:
- $10+10 M_{\odot}$ detectable to $\sim 125$ Mpc (34,000 MWEG)
- Higher mass detectable to hundreds of Mpc (~100,000s MWEG)


Horizon Distance vs Total Mass


## GRB 07020I

(ApJ 2008, 681, 1419)


Fig. 1.- The IPN3 (IPN3 2007) ( $\gamma$-ray) error box overlaps with the spiral arms of the Andromeda galaxy (M31). The inset image shows the full error box superimposed on an SDSS (SDSS 2007) image of M31. The main fi gure shows the overlap of the error box and the spiral arms of M31 in UV light (Thilker et al. 2005).
"intense short hard GRB" (GCN 6088)

## Duration $\sim 0.15$ seconds

* short GRB whose position error box
overlapped with spiral arms of Andromeda galaxy (M3I)
* galaxy located at a distance of $\sim 770 \mathrm{kpc}$
* at the time of GRB, LIGO S5 run was ongoing; the two Hanford interferometers were in science mode
* GRB sky position was not optimal
$F_{R M S}=\sqrt{F_{+}^{2}+F_{\times}^{2}} / \sqrt{2}=0.304$



## Model Based Compact Binary Inspiral Search 07020I

- Analyze 180 s around trigger.
- Few hours before/ after to understand background and detectability, with simulated inspirals
- calculation of probabilities takes into account different properties of
inspiralling binary system, e.g. mass, spins, inclination, sky location


Exclude compact binary progenitor with:
I $M_{\odot}<m_{1}<3 M_{\odot} ; \quad 1 M_{\odot}<m_{2}<40 M_{\odot}$
$\mathrm{D}<3.5 \mathrm{Mpc}$ with $90 \%$ C.L.
Exclude CBC progenitor in M3I with > 99\% C.L.

## Advanced LIGO



Factor of $\sim 10$ in amplitude sensitivity<br>Factor of $\sim 1000$<br>in volume

- Advanced LIGO is approved and funded; construction started
- Expect to be operational in 2014 or 2015


## Science with Advanced LIGO

$\square$ BNS $\square$ NS-BH $\square$ BBH $\square$ Most optimistic


Binary neutron star mergers: from ~20 Mpc to ~350 Mpc Binary black hole mergers: from ~100 Mpc to z=2


