Searching for Gravitational Waves from Soft Gamma Repeaters

Peter Kalmus (Caltech, Columbia) for the LIGO Scientific Collaboration

Image: NASA, CXC, M. Weiss

Outline of the Talk

- 1. Soft Gamma Repeaters (SGRs)
- 2. Individual SGR burst searches
- 3. Stacked SGR burst searches
- 4. Putting upper limits into context
- 5. Plans

Soft Gamma Repeaters

Burst emission

Typical bursts: ~100 ms, ~10⁴² erg/s peak ^[1] Rare giant flares have tails, peak up to10⁴⁷ erg/s Magnetar model Neutron stars with B ~10¹⁵ G ^[2] **Bursts: crustal cracking** ^[3]

Possible excitation of f-modes

Search targets:

Ringdowns 1– 3 kHz tau=200 ms ^[4] WNB below 1 kHz, 11 ms and 100 ms

[1] Woods P M and Thompson C 2004 *Compact Stellar X-Ray Sources* (Cambridge University Press) [2] Duncan R C and Thompson C 1992 Astrophys. J. Lett. 392 L9-L13

[3] Palmer D M et al. 2005 Nature 434 1107-1109

[4] O. Benhar, V. Ferrari, and L. Gualtieri, Phys. Rev. D 70,124015 (2004)

PSU Neutron Stars 2009 June 19

S. J. Schwartz et al. AstrophysJ. Lett., 627:L129-L132, July 2005.

Individual SGR burst searches

PSU Neutron Stars 2009 J

2009 June 19

Science Goals: LIGO S5 first year individual SGR burst search

Abbott et al. PRL 101, 211102 (2008)

LIGO H1 (4 km), H2 (2 km), L1 (4km) detectors

Goals:

- 1. detection statement
- 2. model-dependent upper limits via plausible waveforms
- 3. use detection / upper limits to make astrophysics statements

Burst sample: SGR 1806-20 giant flare 2/4 known **galactic** Soft Gamma Repeaters gave over 214 bursts during S5y1

Burst sample

SGR 1806-20 giant flare, H1 astrowatch

- 214 S5y1 bursts listed by K. Hurley (IPN3)
- 152 SGR 1806-20 events:
 - 74 L1H1H2

_

- 41 two detectors
- 18 single detector
- 19
- 62 SGR 1900+14 events (including a storm):
 - 43 L1H1H2
 - 12 two detectors
 - 2 single detector
 - 5 ·

... for estimating upper limits

Simulation frequencies: 1090, 1590, 2090, 2590 Hz f-mode frequencies depend on star's density 3 kHz upper bound: strange quark stars 1.5 kHz lower bound: lightweight star with stiff EOS [1]

Simulation tau: 200 ms predicted range is 140-380 ms we observe <15% sensitivity loss for RDs with tau in range 100-300 ms

[1] O. Benhar, V. Ferrari, and L. Gualtieri, Phys. Rev. D 70,124015 (2004)

PSU Neutron Stars 2009 June 19

... for estimating upper limits

SGR burst timescales set search time window 5 ms – 200 ms

Band-limited to detector's sensitive regions: 100 – 200 Hz (small band) 100 – 1000 Hz (large band)

WNB injections to estimate upper limits 11 ms and 100 ms durations

Search strategy

[-2,2] second on-source region for isolated bursts (cat2 DQ) accounts for satellite timing uncertainty expect GW – EM coincidence <100 ms
[-1000,1000] second background region (Data Quality flags removed) estimate μ(f), σ(f) used by Flare pipeline estimate local false alarm rate (FAR)

2006 March SGR 1900+14 storm handled with large on-source region

Follow up on-source analysis events with significant FAR No-detection case: loudest on-source event rate should be $1/\Sigma$ (on-source durations) Hz

Flare Pipeline

Simple but effective coherent excess power type method

Networks of 1 or 2 detectors

Spectrogram transformation produces excess power time-frequency tilings

 $P_{tf}^{(12)} = \operatorname{Re}\left[T_{tf}^{(1)}T_{tf}^{(2)*}e^{-i2\pi f dt}\right]$

Clustering applied to bright pixels On-the-fly simulations or MDCs:

$$\xi^{\rm sim}_d(t) = F^+_d(\theta,\phi,\psi) h^{\rm sim}_+(t) + F^\times_d(\theta,\phi,\psi) h^{\rm sim}_\times(t)$$

Isotropic GW emission upper limits at 10 kpc Circles: Giant Flare Diamonds: GRB 060806

Stacked SGR burst searches

PSU Neutron Stars 2009 June 19

SGR 1900+14 Storm Light Curve

t=0 is 2006 March 29 02:53:09.9±0.5 s UT all 3 LIGO detectors were taking science data

Swift/BAT public data

Science Goals: LIGO SGR 1900 storm stacked search

Abbott et al. arXiv:0905.0005 (2009), to appear in ApJL

LIGO H1 (4 km), L1 (4km) detectors

Goals:

- 1. more sensitive search
- 2. detection statement
- 3. model-dependent upper limits via plausible waveforms
- 4. use detection / upper limits to make astrophysics statements

Burst sample: March 2006 SGR1900+14 storm

Model 1: Fluence-weighted (N=18)

Model-dependent Upper Limits

need help putting life in context?

put sensor overload work for V e to meet you life goals

our learn of experts will the data your life prod you on track and and support wh where you need it

Dr. Jacqueline Pe

Conclusion

Context for Upper Limits

loka's model* still the most predictive his model allows total energies of up to 10⁴⁹ erg

Plans

SGRs keep bursting. Will remain important GW targets.

SGR 0418+5729: **new SGR(?)** discovered 2009 June 5 (2 bursts, Fermi, Atel 2077) SGR 0501+4516: **new 1.5 kpc SGR** discovered 2008 August, hundreds of bursts (Swift) SGR 1627-41: a storm after 9.8 years of quiescence in 2008 May (Swift, GCN 7777) AXP 1E1547.0-5408 \rightarrow SGR 1550-5418: Fermi: 31 bursts 2009 January (GCN 8838) SGR 1806-20: last observed burst 2008 November SGR 1900+14: last observed burst 2007 November SGR 0526-66: last observed burst 1983

SGR GW individual and stacked searches will continue: Virgo, GEO, LIGO

Individual burst searches in progress:

LIGO S5 second year + Virgo, SGR 1806-20 and SGR 1900+14 LIGO A5 + GEO, SGR 0501+4516

Modeling seismic excitation of modes in magnetars (with Christian Ott)

goal: advance our understanding of SGR GW burst emission

Future of stacking SGR bursts

E_{GW} sensitivity improvements:

We might get to γ~1 with normal bursts, and: nearby SGR activity aLIGO-generation detectors stacking

We might get to γ~10⁻⁴ with a giant flare, and: nearby SGR activity aLIGO-generation detectors

Will this be enough for a detection?

reserve slides

Timing Uncertainty

