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Neutron Stars and the Equation of State
• Extreme Properties

• Pulsar Constraints – Rotation and Mass

• Pressure–Radius Correlation and the Nuclear
Symmetry Energy

• Observational Mass and Radius Constraints

• Gravitational Radiation and Tidal Love Numbers
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Relevant Observations
• Maximum and Minimum Mass (Binary Pulsars)
• Minimum Rotational Period
• Radiation Radii or Redshifts from X-ray Thermal

Emission
• Crustal Cooling Timescale from X-ray Transients
• X-ray Bursts from Accreting Neutron Stars
• Seismology from Giant Flares from Magnetars
• Pulsar Glitches
• Long-Term Neutron Star Cooling (URCA or not)
• Moments of Inertia from Spin-Orbit Coupling
• Neutrinos from Proto-Neutron Stars (Binding Energies,

Neutrino Opacities, Radii)
• Redshifts from Pulse Shape Modulation
• Gravitational Radiation from Mergers (Masses from

Inspiral, Radii from Tides)
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Neutron Star Structure
Tolman-Oppenheimer-Volkov equations of relativistic
hydrostatic equilibrium:

dp

dr
= −G

c2

(m + 4πpr3)(ǫ + p)

r(r − 2Gm/c2)
dmc2

dr
= 4πǫr2

p is pressure, ǫ is mass-energy density
Useful analytic solutions exist:

• Uniform density ǫ = constant

• Tolman VII ǫ = ǫc[1 − (r/R)2]

• Buchdahl ǫ =
√

pp∗ − 5p

• Tolman IV ν(r) = ν(0) + N ln [1 + (r/a)2]
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Extreme Properties of Neutron Stars
• The most compact configurations occur when the

low-density equation of state is "soft" and the
high-density equation of state is "stiff".

soft
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it ǫ0 is the only
EOS parameter

The TOV
solutions scale
with ǫ0

p = 0 ◦
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Maximum Mass, Minimum Period
Theoretical limits from GR and causality

• Mmax = 4.2(ǫs/ǫ0)
1/2 M⊙ Rhoades & Ruffini (1974), Hartle (1978)

• Rmin = 2.9GM/c2 = 4.3(M/M⊙) km

Lindblom (1984), Glendenning (1992), Koranda, Stergioula s & Friedman (1997)

• ǫc < 4.5 × 1015(M⊙/Mlargest)
2 g cm−3

Lattimer & Prakash (2005)

• Pmin ≃ (0.74 ± 0.03)(M⊙/Msph)
1/2(Rsph/10 km)3/2 ms

Koranda, Stergioulas & Friedman (1997)

• Pmin ≃ 0.96(M⊙/Msph)
1/2(Rsph/10 km)3/2 ms (empirical)

Lattimer & Prakash (2004)

• ǫc > 0.91 × 1015(1 ms/Pmin)2 g cm−3 (empirical)

• cJ/GM 2 . 0.5 (empirical, neutron star)
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Constraints from Pulsar Spins

PSR J1748-2446ad
ν = 716 Hz
Hessels et al. 2006

XTE J1739-285
ν = 1122 Hz
Kaaret et al. 2006

Not confirmed to
be a rotation rate
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Black hole? ⇒
Firm lower mass limit?⇒

M > 1.68 M⊙, 95% confidence {

M < 1.17 M⊙(95%) ⇒

Although simple average
mass of w.d. companions
is 0.27 M⊙ larger, weighted
average is 0.08 M ⊙ smaller

Freire et al. 2007 { } w.d. companion?
statistics?

Champion et al. 2008
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Proto-Neutron Stars
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Effective Minimum Masses
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Neutron Star Matter Pressure and the Radius
p ≃ Kǫ1+1/n

n−1 = d ln p/d ln ǫ − 1 ∼ 1

R ∝ Kn/(3−n)M (1−n)/(3−n)

R ∝ p
1/2
∗ ǫ−1

∗ M 0

(1 < ǫ∗/ǫ0 < 2)

⇑

⇓Wide variation:
1.2 < p(ǫ0)

MeV fm−3 < 7

GR phenomenological
result (Lattimer & Prakash 2001)

R ∝ p
1/4
∗ ǫ

−1/2
∗

p∗ = n2 dEsym

dn
= n2L

3ns

↓ǫ0
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The Radius – Pressure Correlation

R ∝ p1/4

Lattimer & Prakash (2001)
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Potentially Observable Quantities
• Apparent angular diameter from flux and temperature measurements

β ≡ GM/Rc2
R∞

D
=

R

D

1√
1 − 2β

=

√

F∞

σ

1

f2
∞T 2

∞

• Redshift z = (1 − 2β)−1/2 − 1

• Eddington flux
FEDD =

GMc

κc2D2
(1 − 2β)1/2

• Crust thickness (lnH = (2/mbc
2)
∫ pt

0 (dp/n))

∆

R
≡ R − Rt

R
=

(H− 1)(1 − 2β)

H + 2β − 1
≃ (H− 1)

(

1

2β
− 1

)

.

• Moment of Inertia

I ≃ (0.237 ± 0.008)MR2(1 + 2.84β + 18.9β4) M⊙ km2

• Crustal Moment of Inertia
∆I

I
≃ 8π

3

R6pt

IMc2• Binding Energy

B.E. =
N − M

M
≃ (0.60 ± 0.05)

β

1 − β/2• Tidal Love Number

Qij = −λEij , λ = (2/3G)k2R5
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Moment of Inertia
• Spin-orbit coupling of same magnitude as

post-post-Newtonian effects (Barker & O’Connell 1975,
Damour & Schaeffer 1988)

• Precession alters inclination angle and periastron
advance

• More EOS sensitive than R: I ∝ MR2

• Requires extremely relativistic system to extract

• Double pulsar PSR J0737-3037 is a marginal
candidate

• Even more relativistic systems should be found, based
on dimness and nearness of PSR J0737-3037
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I(M, R)
Lattimer & Prakash (2001)

I ≃ (0.237 ± 0.008)MR2

[

1 + 4.2 M km
R M⊙

+ 90
(

M km
R M⊙

)4
]
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Moments of Inertia and Precession

• Spin-orbit coupling: ~̇SA = −~̇L =
G(4MA+3MB)

2MAa3c2
~L × ~SA
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Moments of Inertia and Precession
• Spin-orbit coupling: ~̇SA = −~̇L =

G(4MA+3MB)

2MAa3c2
~L × ~SA• Precession Period:

Pp =
2(MA + MB)ac2

GMB(4MA + 3MB)
P (1 − e2) ≃ 74.9 years
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Moments of Inertia and Precession
• Spin-orbit coupling: ~̇SA = −~̇L =

G(4MA+3MB)

2MAa3c2
~L × ~SA• Precession Period:

Pp =
2(MA + MB)ac2

GMB(4MA + 3MB)
P (1 − e2) ≃ 74.9 years

• Precession Amplitude ∝ ~SA × ~L:

δi =
| ~SA|
|~L|

sin θ ≃ IA(MA + MB)

a2MAMB

P

PA
sin θ ≃ (3.6 − 7.2) sin θ × 10−5
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Moments of Inertia and Precession
• Spin-orbit coupling: ~̇SA = −~̇L =

G(4MA+3MB)

2MAa3c2
~L × ~SA• Precession Period:

Pp =
2(MA + MB)ac2

GMB(4MA + 3MB)
P (1 − e2) ≃ 74.9 years

• Precession Amplitude ∝ ~SA × ~L:

δi =
| ~SA|
|~L|

sin θ ≃ IA(MA + MB)

a2MAMB

P

PA
sin θ ≃ (3.6 − 7.2) sin θ × 10−5

• Delay in Time-of-Arrival:

δta =

(

MB

MA + MB

)

a

c
δi cos i ≈ 0.4 − 4.0 sin θ µs
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Moments of Inertia and Precession
• Spin-orbit coupling: ~̇SA = −~̇L =

G(4MA+3MB)

2MAa3c2
~L × ~SA• Precession Period:

Pp =
2(MA + MB)ac2

GMB(4MA + 3MB)
P (1 − e2) ≃ 74.9 years

• Precession Amplitude ∝ ~SA × ~L:

δi =
| ~SA|
|~L|

sin θ ≃ IA(MA + MB)

a2MAMB

P

PA
sin θ ≃ (3.6 − 7.2) sin θ × 10−5

• Delay in Time-of-Arrival:

δta =

(

MB

MA + MB

)

a

c
δi cos i ≈ 0.4 − 4.0 sin θ µs

• Periastron Advance ∝ ~SA · ~L: AP /AP N =

2πIA

PA

(

2 + 3MB/MA

3M2
A + 3M2

B + 2MAMB

)

√

MA + MB

Ga
cos θ ≃ (2.2−4.3)×10−4 cos θ
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Moments of Inertia and Precession
• Spin-orbit coupling: ~̇SA = −~̇L =

G(4MA+3MB)

2MAa3c2
~L × ~SA• Precession Period:

Pp =
2(MA + MB)ac2

GMB(4MA + 3MB)
P (1 − e2) ≃ 74.9 years

• Precession Amplitude ∝ ~SA × ~L:

δi =
| ~SA|
|~L|

sin θ ≃ IA(MA + MB)

a2MAMB

P

PA
sin θ ≃ (3.6 − 7.2) sin θ × 10−5

• Delay in Time-of-Arrival:

δta =

(

MB

MA + MB

)

a

c
δi cos i ≈ 0.4 − 4.0 sin θ µs

• Periastron Advance ∝ ~SA · ~L: AP /AP N =

2πIA

PA

(

2 + 3MB/MA

3M2
A + 3M2

B + 2MAMB

)

√

MA + MB

Ga
cos θ ≃ (2.2−4.3)×10−4 cos θ

• Moment of Inertia – Mass – Radius

I ≃ (0.237 ± 0.008)MR2

[

1 + 4.2
M km

R M⊙

+ 90

(

M km

R M⊙

)4
]
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Comparison of Binary Pulsars

PSR 0707-3039 PSR 1913+16 PSR 1534+12
References a, b, c d e, f

a/c (s) 2.93 6.38 7.62
P (h) 2.45 7.75 10.1

e 0.088 0.617 0.274
MA (M⊙) 1.337 ± 0.005 1.4414 ± 0.0002 1.333 ± 0.001
MB (M⊙) 1.250 ± 0.005 1.3867 ± 0.0002 1.345 ± 0.001

TGW (M yr) 85 245 2250
i 87.9 ± 0.6◦ 47.2◦ 77.2◦

PA (ms) 22.7 59 37.9
θA 13◦ ± 10◦ 21.1◦ 25.0◦ ± 3.8◦

φA 246◦ ± 5◦ 9.7◦ 290◦ ± 20◦

PpA (yr) 74.9 297.2 700
δta/IA,80 (µs) 0.7 ± 0.6 11.2 7.9 ± 1.1

ApA/(A1PNIA,80) 3.4+0.2
−0.1 × 10−5 1.0 × 10−5 1.15+0.04

−0.03 × 10−5

A2PN/A1PN 5.2 × 10−5 4.7 × 10−5 2.3 × 10−5

a: Lyne et al. (2004); b: Solution 1, Jenet & Ransom (2004); c: Coles et al. (2004)
d: Weisberg & Taylor (2002, 2004); e: Stairs et al. (2002, 200 4); f: Bogdanov et al. (2002)
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EOS Constraint
Lattimer & Schutz (2005)

Bejger & Haensel (2003)

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 19/??



Tidal Effects in Mergers
Thesis work of Sergey Postnikov (Ohio University) in
collaboration with M. Praksh and JML

• Masses of components of inspiralling neutron stars will be well measured.

• Large finite-size effects like mass exchange and tidal disruption will be visible in
the gravitational wave signal toward the end of inspiral

• However, the gravitational wave signal is very complex during this period

• Tidal effects are potentially measurable during the earlier part of the evolution
when the waveform is relatively clean; it is a cumulative effect

• The effect depends on the induced quadrupole moment Qij , which is proportional
to the applied tidal field Eij

• In early evolution, tidal effects form a very small correction in which the
accumulated phase shift is characterized by the weighted average Qij for the two
stars.

• The proportionality constant depends on the stellar radius and the internal
structure: λ = (2/3G)k2R5

• The tidal Love number k2 depends on the equation of state and compactness β

• Pronounced differences in k2 exist between neutron stars and strange quark stars

• The extreme dependence on R offers a possibility of a constraint
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Computation of Tidal Love Numbers
We follow Thorne & Campolattaro (1967 ApJ 149, 591) and Hinderer (2008 ApJ 677,
1216):

k2(β, yR) =
8

5
β5(1 − 2β)2 [2 − yR + 2β(yR − 1)] ×

× {2β
(

6 − 3yR + 3β(5yR − 8) + 2β2
[

13 − 11yR + β(3yR − 2) + 2β2(1 + yR)
])

+

+ 3(1 − 2β)2 [2 − yR + 2β(yR − 1)] ln(1 − 2β)}−1.

yR = [rH′(r)/H(r)]r=R

H′′(r) + H′(r)

[

2

r
+ eλ(r)

(

2m(r)

r2
+ 4πr[p(r) − ρ(r)]

)]

+ H(r)Q(r) = 0,

Q(r) = 4πeλ(r)

(

5ρ(r) + 9p(r) +
ρ(r) + p(r)

c2s(r)

)

− 6
eλ(r)

r2
−
(

ν′(r)
)2

.

Can be simplified:

ry′(r) + y(r)2 + y(r)eλ(r)
(

1 + 4πr2[p(r) − ρ(r)]
)

+ r2Q(r) = 0 ,

y(0) = 2
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Newtonian Limit
p << ρ, ρr2 << 1

k2(yR) =
1

2

2 − yR

3 + yR
,

ry′(r) + y(r)2 + y(r) − 6 + 4πr2 ρ(r)

c2s(r)
= 0 .

Analytic polytropic cases:

n = 0 : y(r) = 2, k2 = 0

But Damour & Nagar (archiv:0906.0096) claim that the density discontinuity at the
surface changes this such that yR = −1 and k2 = 3/4.

n = 1 : y(r) =
πr

R

J3/2(πr/R)

J5/2(πr/R)
− 3, yR =

π2 − 9

3
, k2 =

15 − π2

2π2
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Tidal Love Numbers of Polytropes
Postnikov, Prakash & Lattimer (2009)
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Tidal Love Numbers of Polytropes
Postnikov, Prakash & Lattimer (2009)
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Tidal Love Numbers of Analytic Solutions
Postnikov, Prakash & Lattimer (2009)
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Tidal Love Numbers of Realistic Equations of
State

Postnikov, Prakash & Lattimer (2009)
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Tidal Love Numbers of Realistic Equations of
State

Postnikov, Prakash & Lattimer (2009)
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TOV Inversion
How would a simultaneous M − R determination constrain
the EOS? Each M-R curve specifies a unique p− ρ relation.

• Generate physically reasonable M − R curves and the p − ρ relations that they
specify.

• Generate arbitrary p − ρ relations and compute M − R curves from them; select
those M − R curves passing within the error box.

M = 1.4 ± 0.1 M⊙
R = 13 ± 1 km

M = 1.4 ± 0.1 M⊙
R = 13 ± 1 km

Postnikov, Prakash & Lattimer (2009)
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TOV Inversion (cont.)

M = 1.4 ± 0.1 M⊙
R = 13 ± 1 km

M = 1.4 ± 0.05 M⊙
R = 13 ± 0.5 km

Dependence on measurement errors
Postnikov, Prakash & Lattimer (2009)

The current uncertainty in the subnuclear EOS introduces
significant width to the inferred high-density
pressure-density relation.
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Conclusions
• Neutron stars are a powerful laboratory to constrain dense

matter physics, especially the symmetry energy and

composition at supranuclear densities.

• Many aspects of neutron star structure depend on specific

equation of state parameters or their density dependence in a

model-independent fashion.

• Increasing evidence supports the existence of massive

neutron stars ( M >∼ 1.7 M⊙), constraining exotic matter.

• Many kinds of observations are now available to constrain

neutron star radii, although no reliable measures yet exist .

• An accurate, simultaneous mass and radius measurement

from even one neutron star would provide a significant

constraint.
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