Nuclear Matter Equation of State

James M. Lattimer

lattimer@astro.sunysb.edu

Department of Physics & Astronomy Stony Brook University

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 1/??

Neutron Stars and the Equation of State

- Extreme Properties
- Pulsar Constraints Rotation and Mass
- Pressure–Radius Correlation and the Nuclear Symmetry Energy
- Observational Mass and Radius Constraints
- Gravitational Radiation and Tidal Love Numbers

Credit: Dany Page, UNAMobing Neutron Stars With Gravitational Waves, PSU 18 June 2009 - p. 3/??

Relevant Observations

- Maximum and Minimum Mass (Binary Pulsars)
- Minimum Rotational Period
- Radiation Radii or Redshifts from X-ray Thermal Emission
- Crustal Cooling Timescale from X-ray Transients
- X-ray Bursts from Accreting Neutron Stars
- Seismology from Giant Flares from Magnetars
- Pulsar Glitches
- Long-Term Neutron Star Cooling (URCA or not)
- Moments of Inertia from Spin-Orbit Coupling
- Neutrinos from Proto-Neutron Stars (Binding Energies, Neutrino Opacities, Radii)
- Redshifts from Pulse Shape Modulation
- Gravitational Radiation from Mergers (Masses from Inspiral, Radii from Tides)

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations of relativistic hydrostatic equilibrium:

$$\frac{dp}{dr} = -\frac{G}{c^2} \frac{(m+4\pi pr^3)(\epsilon+p)}{r(r-2Gm/c^2)}$$
$$\frac{dmc^2}{dr} = 4\pi\epsilon r^2$$

p is pressure, ϵ is mass-energy density Useful analytic solutions exist:

- Uniform density $\epsilon = constant$
- Tolman VII $\epsilon = \epsilon_c [1 (r/R)^2]$
- Buchdahl $\epsilon = \sqrt{pp_*} 5p$
- Tolman IV $\nu(r) = \nu(0) + N \ln [1 + (r/a)^2]$

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 5/??

Extreme Properties of Neutron Stars

• The most compact configurations occur when the low-density equation of state is "soft" and the high-density equation of state is "stiff".

Maximum Mass, Minimum Period Theoretical limits from GR and causality

• $M_{max} = 4.2 (\epsilon_s / \epsilon_0)^{1/2} M_{\odot}$

Rhoades & Ruffini (1974), Hartle (1978)

• $R_{min} = 2.9GM/c^2 = 4.3(M/M_{\odot})$ km

Lindblom (1984), Glendenning (1992), Koranda, Stergioulas & Friedman (1997)

- $\epsilon_c < 4.5 imes 10^{15} ({
 m M}_{\odot}/M_{largest})^2 {
 m ~g~cm^{-3}}$ Lattimer & Prakash (2005)
- $P_{min} \simeq (0.74 \pm 0.03) (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$

Koranda, Stergioulas & Friedman (1997)

• $P_{min} \simeq 0.96 (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$ (empirical)

Lattimer & Prakash (2004)

- $\epsilon_c > 0.91 \times 10^{15} (1 \text{ ms}/P_{min})^2 \text{ g cm}^{-3}$ (empirical)
- $cJ/GM^2 \lesssim 0.5$ (empirical, neutron star)

Constraints from Pulsar Spins

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 8/??

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 9/??

Proto-Neutron Stars

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 10/??

Effective Minimum Masses

Strobel, Schaab & Weigel (1999)

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 11/??

Neutron Star Matter Pressure and the Radius

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 12/??

The Radius – Pressure Correlation

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 13/??

Potentially Observable Quantities

• Apparent angular diameter from flux and temperature measurements $\beta \equiv GM/Rc^2$

$$\frac{R_{\infty}}{D} = \frac{R}{D} \frac{1}{\sqrt{1 - 2\beta}} = \sqrt{\frac{F_{\infty}}{\sigma}} \frac{1}{f_{\infty}^2 T_{\infty}^2}$$
$$z = (1 - 2\beta)^{-1/2} - 1$$

Eddington flux

Redshift

$$F_{EDD} = \frac{GMc}{\kappa c^2 D^2} (1 - 2\beta)^{1/2}$$

• Crust thickness $(\ln \mathcal{H} = (2/m_b c^2) \int_0^{p_t} (dp/n))$

$$\frac{\Delta}{R} \equiv \frac{R - R_t}{R} = \frac{(\mathcal{H} - 1)(1 - 2\beta)}{\mathcal{H} + 2\beta - 1} \simeq (\mathcal{H} - 1)\left(\frac{1}{2\beta} - 1\right).$$

Moment of Inertia

 $I \simeq (0.237 \pm 0.008) M R^2 (1 + 2.84\beta + 18.9\beta^4) \,\mathrm{M_{\odot} \, km^2}$

Crustal Moment of Inertia

$$\frac{\Delta I}{I} \simeq \frac{8\pi}{3} \frac{R^6 p_t}{IMc^2}$$

Binding Energy

B.E.
$$= \frac{N - M}{M} \simeq (0.60 \pm 0.05) \frac{\beta}{1 - \beta/2}$$

Tidal Love Number

$$Q_{ij} = -\lambda E_{ij}, \qquad \lambda = (2/3G)k_2R^5$$

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 14/??

Moment of Inertia

- Spin-orbit coupling of same magnitude as post-post-Newtonian effects (Barker & O'Connell 1975, Damour & Schaeffer 1988)
- Precession alters inclination angle and periastron advance
- More EOS sensitive than $R: I \propto MR^2$
- Requires extremely relativistic system to extract
- Double pulsar PSR J0737-3037 is a marginal candidate
- Even more relativistic systems should be found, based on dimness and nearness of PSR J0737-3037

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 16/??

• Spin-orbit coupling: $\dot{\vec{S}}_A = -\dot{\vec{L}} = \frac{G(4M_A + 3M_B)}{2M_A a^3 c^2} \vec{L} \times \vec{S}_A$

- Spin-orbit coupling: $\dot{\vec{S}}_A = -\dot{\vec{L}} = \frac{G(4M_A + 3M_B)}{2M_A a^3 c^2} \vec{L} \times \vec{S}_A$
- Precession Period:

$$P_p = \frac{2(M_A + M_B)ac^2}{GM_B(4M_A + 3M_B)}P(1 - e^2) \simeq 74.9 \text{ years}$$

- Spin-orbit coupling: $\dot{\vec{S}}_A = -\dot{\vec{L}} = \frac{G(4M_A + 3M_B)}{2M_A a^3 c^2} \vec{L} \times \vec{S}_A$
- Precession Period:

$$P_p = \frac{2(M_A + M_B)ac^2}{GM_B(4M_A + 3M_B)}P(1 - e^2) \simeq 74.9 \text{ years}$$

• Precession Amplitude $\propto \vec{S}_A \times \vec{L}$:

$$\delta_i = \frac{|\vec{S_A}|}{|\vec{L}|} \sin \theta \simeq \frac{I_A(M_A + M_B)}{a^2 M_A M_B} \frac{P}{P_A} \sin \theta \simeq (3.6 - 7.2) \sin \theta \times 10^{-5}$$

- Spin-orbit coupling: $\dot{\vec{S}}_A = -\dot{\vec{L}} = \frac{G(4M_A + 3M_B)}{2M_A a^3 c^2} \vec{L} \times \vec{S}_A$
- Precession Period:

$$P_p = \frac{2(M_A + M_B)ac^2}{GM_B(4M_A + 3M_B)}P(1 - e^2) \simeq 74.9 \text{ years}$$

• Precession Amplitude $\propto \vec{S}_A \times \vec{L}$:

$$\delta_i = \frac{|\vec{S_A}|}{|\vec{L}|} \sin \theta \simeq \frac{I_A(M_A + M_B)}{a^2 M_A M_B} \frac{P}{P_A} \sin \theta \simeq (3.6 - 7.2) \sin \theta \times 10^{-5}$$

• Delay in Time-of-Arrival:

$$\delta t_a = \left(\frac{M_B}{M_A + M_B}\right) \frac{a}{c} \delta_i \cos i \approx 0.4 - 4.0 \, \sin \theta \, \mu \mathrm{s}$$

 Spin-orbit coupling: \$\vec{S}_A = -\vec{L} = \vec{G(4M_A + 3M_B)}{2M_A a^3 c^2} \vec{L} \times \vec{S}_A\$

 Precession Period:

$$P_p = \frac{2(M_A + M_B)ac^2}{GM_B(4M_A + 3M_B)}P(1 - e^2) \simeq 74.9 \text{ years}$$

• Precession Amplitude $\propto \vec{S}_A \times \vec{L}$:

$$\delta_i = \frac{|\vec{S_A}|}{|\vec{L}|} \sin \theta \simeq \frac{I_A(M_A + M_B)}{a^2 M_A M_B} \frac{P}{P_A} \sin \theta \simeq (3.6 - 7.2) \sin \theta \times 10^{-5}$$

Delay in Time-of-Arrival:

$$\delta t_a = \left(\frac{M_B}{M_A + M_B}\right) \frac{a}{c} \delta_i \cos i \approx 0.4 - 4.0 \, \sin \theta \, \mu \mathrm{s}$$

• Periastron Advance $\propto \vec{S}_A \cdot \vec{L}$: $A_P/A_{PN} =$

$$\frac{2\pi I_A}{P_A} \left(\frac{2 + 3M_B/M_A}{3M_A^2 + 3M_B^2 + 2M_A M_B} \right) \sqrt{\frac{M_A + M_B}{Ga}} \cos\theta \simeq (2.2 - 4.3) \times 10^{-4} \cos\theta$$

- Spin-orbit coupling: $\dot{\vec{S}}_A = -\dot{\vec{L}} = \frac{G(4M_A + 3M_B)}{2M_A a^3 c^2} \vec{L} \times \vec{S}_A$
- Precession Period:

$$P_p = \frac{2(M_A + M_B)ac^2}{GM_B(4M_A + 3M_B)}P(1 - e^2) \simeq 74.9 \text{ years}$$

• Precession Amplitude $\propto \vec{S}_A \times \vec{L}$:

$$\delta_i = \frac{|\vec{S_A}|}{|\vec{L}|} \sin \theta \simeq \frac{I_A(M_A + M_B)}{a^2 M_A M_B} \frac{P}{P_A} \sin \theta \simeq (3.6 - 7.2) \sin \theta \times 10^{-5}$$

Delay in Time-of-Arrival:

$$\delta t_a = \left(\frac{M_B}{M_A + M_B}\right) \frac{a}{c} \delta_i \cos i \approx 0.4 - 4.0 \, \sin \theta \, \mu \mathrm{s}$$

• Periastron Advance $\propto \vec{S}_A \cdot \vec{L}$: $A_P/A_{PN} =$

$$\frac{2\pi I_A}{P_A} \left(\frac{2 + 3M_B/M_A}{3M_A^2 + 3M_B^2 + 2M_A M_B} \right) \sqrt{\frac{M_A + M_B}{Ga}} \cos\theta \simeq (2.2 - 4.3) \times 10^{-4} \cos\theta$$

Moment of Inertia – Mass – Radius

$$I \simeq (0.237 \pm 0.008) M R^2 \left[1 + 4.2 \frac{M \text{ km}}{R \text{ M}_{\odot}} + 90 \left(\frac{M \text{ km}}{R \text{ M}_{\odot}} \right)^4 \right]$$

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 17/??

Comparison of Binary Pulsars

References	PSR 0707-3039 a, b, c	PSR 1913+16 <mark>d</mark>	PSR 1534+12 <mark>e, f</mark>
a/c (s)	2.93	6.38	7.62
\dot{P} (h)	2.45	7.75	10.1
e	0.088	0.617	0.274
M_A (M $_{\odot}$)	1.337 ± 0.005	1.4414 ± 0.0002	1.333 ± 0.001
M_B (M $_{\odot}$)	1.250 ± 0.005	1.3867 ± 0.0002	1.345 ± 0.001
T_{GW} (M yr)	85	245	2250
i	$87.9 \pm 0.6^{\circ}$	47.2°	77.2°
P_A (ms)	22.7	59	37.9
$ heta_A$	$13^{\circ} \pm 10^{\circ}$	21.1°	$25.0^{\circ} \pm 3.8^{\circ}$
ϕ_A	$246^{\circ} \pm 5^{\circ}$	9.7°	$290^{\circ} \pm 20^{\circ}$
P_{pA} (yr)	74.9	297.2	700
$\delta t_a/I_{A.80}~(\mu { m s})$	0.7 ± 0.6	11.2	7.9 ± 1.1
$A_{pA}/(A_{1PN}I_{A,80})$	$3.4^{+0.2}_{-0.1} \times 10^{-5}$	1.0×10^{-5}	$1.15^{+0.04}_{-0.03} \times 10^{-5}$
A_{2PN}/A_{1PN}	5.2×10^{-5}	4.7×10^{-5}	2.3×10^{-5}

a: Lyne et al. (2004); b: Solution 1, Jenet & Ransom (2004); c: Coles et al. (2004) d: Weisberg & Taylor (2002, 2004); e: Stairs et al. (2002, 2004); f: Bogdanov et al. (2002)

EOS Constraint

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 19/??

Tidal Effects in Mergers

Thesis work of Sergey Postnikov (Ohio University) in collaboration with M. Praksh and JML

- Masses of components of inspiralling neutron stars will be well measured.
- Large finite-size effects like mass exchange and tidal disruption will be visible in the gravitational wave signal toward the end of inspiral
- However, the gravitational wave signal is very complex during this period
- Tidal effects are potentially measurable during the earlier part of the evolution when the waveform is relatively clean; it is a cumulative effect
- The effect depends on the induced quadrupole moment Q_{ij} , which is proportional to the applied tidal field E_{ij}
- In early evolution, tidal effects form a very small correction in which the accumulated phase shift is characterized by the weighted average Q_{ij} for the two stars.
- The proportionality constant depends on the stellar radius and the internal structure: $\lambda = (2/3G)k_2R^5$
- The tidal Love number k_2 depends on the equation of state and compactness β
- Pronounced differences in k_2 exist between neutron stars and strange quark stars
- The extreme dependence on R offers a possibility of a constraint

Computation of Tidal Love Numbers

We follow Thorne & Campolattaro (1967 ApJ 149, 591) and Hinderer (2008 ApJ 677, 1216):

$$k_{2}(\beta, y_{R}) = \frac{8}{5}\beta^{5}(1 - 2\beta)^{2} \left[2 - y_{R} + 2\beta(y_{R} - 1)\right] \times \\ \times \left\{2\beta \left(6 - 3y_{R} + 3\beta(5y_{R} - 8) + 2\beta^{2} \left[13 - 11y_{R} + \beta(3y_{R} - 2) + 2\beta^{2}(1 + y_{R})\right] + 3(1 - 2\beta)^{2} \left[2 - y_{R} + 2\beta(y_{R} - 1)\right] \ln(1 - 2\beta)\right\}^{-1}.$$

 $y_R = [rH'(r)/H(r)]_{r=R}$

$$H''(r) + H'(r) \left[\frac{2}{r} + e^{\lambda(r)} \left(\frac{2m(r)}{r^2} + 4\pi r[p(r) - \rho(r)] \right) \right] + H(r)Q(r) = 0,$$

$$Q(r) = 4\pi e^{\lambda(r)} \left(5\rho(r) + 9p(r) + \frac{\rho(r) + p(r)}{c_s^2(r)} \right) - 6\frac{e^{\lambda(r)}}{r^2} - \left(\nu'(r)\right)^2.$$

Can be simplified:

$$ry'(r) + y(r)^{2} + y(r)e^{\lambda(r)} \left(1 + 4\pi r^{2}[p(r) - \rho(r)]\right) + r^{2}Q(r) = 0,$$

$$y(0) = 2$$

Newtonian Limit

$$p << \rho, \qquad \rho r^2 << 1$$

$$k_2(y_R) = \frac{1}{2} \frac{2 - y_R}{3 + y_R},$$

$$ry'(r) + y(r)^2 + y(r) - 6 + 4\pi r^2 \frac{\rho(r)}{c_s^2(r)} = 0.$$

Analytic polytropic cases:

$$n = 0: \quad y(r) = 2, \qquad k_2 = 0$$

But Damour & Nagar (archiv:0906.0096) claim that the density discontinuity at the surface changes this such that $y_R = -1$ and $k_2 = 3/4$.

$$n = 1: \qquad y(r) = \frac{\pi r}{R} \frac{J_{3/2}(\pi r/R)}{J_{5/2}(\pi r/R)} - 3, \qquad y_R = \frac{\pi^2 - 9}{3}, \qquad k_2 = \frac{15 - \pi^2}{2\pi^2}$$

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 22/??

Tidal Love Numbers of Polytropes

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 23/??

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 24/??

Tidal Love Numbers of Analytic Solutions

Postnikov, Prakash & Lattimer (2009)

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 25/??

Tidal Love Numbers of Realistic Equations of

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 26/??

Tidal Love Numbers of Realistic Equations of

State

β

Probing Neutron Stars With Gravitational Waves. PSU 18 June 2009 – p. 27/??

TOV Inversion

How would a simultaneous M - R determination constrain the EOS? Each M-R curve specifies a unique $p - \rho$ relation.

- Generate physically reasonable M-R curves and the $p-\rho$ relations that they specify.
- Generate arbitrary $p \rho$ relations and compute M R curves from them; select those M R curves passing within the error box. Postnikov, Prakash & Lattimer (2009)

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 28/??

TOV Inversion (cont.)

Dependence on measurement errors

Postnikov, Prakash & Lattimer (2009)

The current uncertainty in the subnuclear EOS introduces significant width to the inferred high-density pressure-density relation.

Probing Neutron Stars With Gravitational Waves, PSU 18 June 2009 – p. 29/??

Conclusions

- Neutron stars are a powerful laboratory to constrain dense matter physics, especially the symmetry energy and composition at supranuclear densities.
- Many aspects of neutron star structure depend on specific equation of state parameters or their density dependence in a model-independent fashion.
- Increasing evidence supports the existence of massive neutron stars ($M\gtrsim 1.7~{\rm M}_{\odot}$), constraining exotic matter.
- Many kinds of observations are now available to constrain neutron star radii, although no reliable measures yet exist.
- An accurate, simultaneous mass and radius measurement from even one neutron star would provide a significant constraint.