Stellar Collapse, Core-Collapse Supernovae and Gravitational Waves

Christian David Ott

cott@tapir.caltech.edu

TAPIR, California Institute of Technology, Pasadena, CA, USA Niels Bohr International Academy, Niels Bohr Institute, Copenhagen, Denmark Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA

Plan of this Talk

- Introduction: The Core-Collapse Supernova Problem
- Supernova Mechanisms
 - Neutrino Mechanism
 - MHD/Magnetorotational Mechanism
 - Acoustic Mechanism
- Remarks on Black Hole Formation
- Gravitational Waves from Stellar Collapse, Core-Collapse Supernovae and Protoneutron Stars:
 - GW emission mechanisms.
 - How to probe the core-collapse supernova explosion mechanism with GWs.

Betelgeuse as seen by the HST, $\, D \approx 200 \ pc$

Rigel, $D \approx 240 \text{ pc}$

Betelgeuse as seen by the HST, $D \approx 200 \text{ pc}$

Rigel, $D \approx 240 \text{ pc}$

SN1987A, LMC, D \approx 51.4 kpc Progenitor: BSG Sanduleak -69° 220a, 18 M_{SUN}

- < 1 SN/40 years in the Milky Way
- < 2-3 SN/100 years in the Local Group</p>
- >1 SN/2 years at D ~ 3-5 Mpc.

The Core-Collapse Scenario

- Nuclear fusion up to O/Ne or iron-group nuclei.
- O/Ne or Iron core: electron degenerate, Chandrasekhar-mass object; $P \approx K \rho^{4/3} + P_{\text{thermal}}$
- Effective Chandrasekhar mass: $M_{\rm Ch} \approx 5.38 Y_e^2 \left[1 + \frac{s_e^2}{\pi k_{\rm B} Y_e} \right] M_{\odot}$

 \sim **1.4 – 2 M**_{SUN}.

 Onset of gravitational collapse when pushed over effective M_{Ch}:

$$e^- + p \xrightarrow{(W)} \nu_e + n$$

$$\gamma + {}^{56}_{26}\mathrm{Fe} \rightleftharpoons 13\alpha + 4n$$

Collapse and Bounce

- Collapse separates iron core into homologously (v∞r) collapsing inner core and supersonically collapsing outer core.
- EOS stiffens at ρ_{nuc}: Core rebounds ("core bounce"); hydrodynamic bounce shock.
- Shock loses kinetic energy to dissociation + neutrinos:

-> Shock stalls.

$$\begin{split} \rho_c &\approx 3 \times 10^{14} \text{ g/cm}^3 \\ T &\approx 5 - 10 \text{ MeV} \\ s &\approx 1 - 2 \text{ k}_\text{B} \text{/baryon} \\ \gamma_e &\approx 0.25 - 0.30 \\ \text{M}_{\text{PNS}} &\approx 0.6 \text{ M}_{\text{SUN}} \end{split}$$

The Supernova Problem

- Shock always stalls (no 'prompt' hydrodynamic explosions).
- Shock revival and SN explosion or collapse to BH (collapsar/GRB?).
- What is the mechanism of shock revival?

Blowing up Massive Stars: Core-Collapse SN Mechanisms

Introduced by:

[Colgate & White 1966, Arnett 1966, Wilson 1985, Bethe & Wilson 1985]

Magnetorotational Mechanism

[LeBlanc & Wilson 1970, Bisnovatyi-Kogan et al. 1976, Meier et al. 1976, Symbalisty 1984]

Acoustic Mechanism

[proposed by Burrows et al. 2006, 2007; not (yet?) confirmed by other groups/codes]

Blowing up Massive Stars: Core-Collapse SN Mechanisms

Introduced by:

[Colgate & White 1966, Arnett 1966, Wilson 1985, Bethe & Wilson 1985]

Magnetorotational Mechanism

[LeBlanc & Wilson 1970, Bisnovatyi-Kogan et al. 1976, Meier et al. 1976, Symbalisty 1984]

Acoustic Mechanism

[proposed by Burrows et al. 2006, 2007; not (yet?) confirmed by other groups/codes]

The Neutrino Mechanism

[Wilson 1985, Bethe & Wilson 1985; recent reviews: Kotake et al. 2006, Janka et al. 2007]

[100 km]

- Neutrino cooling: $Q^-_
 u \propto T^6$
- Neutrino heating: $Q_{\nu}^{+} \propto L_{\nu} r^{-2} \langle \epsilon_{\nu}^{2} \rangle$
- Neutrino mechanism:

Based on subtle imbalance between neutrino **heating** and **cooling** in the postshock region.

Problem: Fails to explode massive stars in spherical symmetry.

[Thompson et al. 2003, Rampp & Janka 2002, Liebendörfer et al. 2002,2005]

Breaking of spherical symmetry is a key ingredient of the supernova mechanism!

Standing Accretion Shock Instability

[Blondin et al. '03,'06; Foglizzo et al. '06, Scheck et al. '06, '07, Burrows et al. '06, '07, **Kotake et al. '07, '09, Iwakami et al. '08, '09**]

Advective-acoustic cycle drives shock instability.

Seen in simulations by all groups!

Status of the Neutrino Mechanism

- Works for low-mass massive stars in spherical symmetry (1D):
 O-Ne cores with ZAMS M≤ 9 M_{SUN}. [Kitaura et al. 2006, Burrows 1988, Burrows et al. 2007c]
- **Dessart et al. '06,'07**: 2D works in the case of accretion-induced collapse (AIC) of White Dwarfs to Neutron Stars.
- Marek & Janka 2009: 2D + soft equation of state (EOS) + pseudogeneral-relativistic (GR) potential + ray-by-ray neutrino transport.
 -> late, weak explosion in 11.2 and 15 M_{SUN} stars.
- Mezzacappa, Bruenn et al. [unpublished, private communication]: 2D + soft EOS + pseudo-GR potential + ray-by-ray MGFLD neutrino transport. -> early, strong explosions (in disagreement with Marek & Janka?)
- Ott et al. 2008: Outcome insensitive to neutrino transport details, but no neutrino-driven explosions in best VULCAN/2D simulations.

Blowing up Massive Stars: Core-Collapse SN Mechanisms

Introduced by:

Neutrino Mechanism

[Colgate & White 1966, Arnett 1966, Wilson 1985, Bethe & Wilson 1985]

Magnetorotational Mechanism

[LeBlanc & Wilson 1970, Bisnovatyi-Kogan et al. 1976, Meier et al. 1976, Symbalisty 1984]

Acoustic Mechanism

[proposed by Burrows et al. 2006, 2007; not (yet?) confirmed by other groups/codes]

MHD-driven Explosions

[e.g., Burrows et al. 2007, Dessart et al. 2008, Kotake et al. 2004, Yamada & Sawai 2004, Sawai et al. 2008, Takiwaki et al. 2009]

- Rapid rotation:
 - P₀ < 4-6 s -> millisecond PNS
- PNS rotational energy: ~10 B
- Amplification of B fields up to equipartition:
 - compression
 - dynamos
 - magneto-rotational instability (MRI)
- Jet-driven outflows.
- MHD-driven explosion may be GRB precursor.

•	Ν.				1				٠			1			1				*	
1	х		5		х.				٠			1			X				•	
	٠		×						٠						1				*	
. •	٧		٠				٠		٠			*			•				*	
. 50	۲		٠		٠		٠					٠							*	
•	×		x				٠		•						¢					
•	٠		٠				٠								٠				•	
	٠		٠		•				٠			٠			•					
	۰.		×		•		•		•						٠				*	
•	•		٠		•		٠		•			•			٠				*	
•	٠		٠		•		÷		-			•			٠				-	
	٠		٠		•		1								٠					
	٠		٠				×								٠					
•	٠		•		•		5								•					
-	٠		٠		*		1								٠				-	
-	٠		۰.		•										×				-	
•	٠		٠		•		٠.								٠				•	
-	٠		ŀ				-		٠.			•			÷					
•	٠		٠		•				7	•					٠				•	
•	۸		٠		•		۰.		-			•			٠				•	
•	1		٠		•		٠					•			٠				*	
	1		×		•		٠		•						*				-	
	۲		٠		٠		٠					٠.			٠				*	
•	٠		٠		•		٠.								٠					
•	٠		2		٠				•			•							٩	
*	1		1		1		۲		٠			٠			•				4	
	*		•		۲		٠		•				+	M	16	0.1-	i in	201	111	
	•		1		۲		•		٠			٩		IN	10	B-F	iel	d	.ur	
1	2				1				•			1		Te	пе	=-	183	1.5	ms	
1	٠		•		۲		۲		٠			٩	F	lad	ius	=	50	0.0) kr	m

VULCAN 2D R-MHD code, Livne et al. 2007, Burrows et al. 2007.

Newtonian Radiation-MHD Simulations with VULCAN/2D

Magnetic field lines in M15B11UP2A1H of Burrows, Dessart, Livne, Ott, Murphy '07.

ismod2p_r04k B-Field Time = -178.5 ms Radius = 100.00 km

Features/Limitations of the Magnetorotational Mechanism

[Burrows et al. 2007]

- Jet powers up to 10 B/s (10^{52} erg/s).
- Simultaneous explosion and accretion.
- Hypernova energies (> 10 B) attainable.
- MHD mechanism inefficient for cores with precollapse P₀ > 4 s, but stellar evolution + NS birth spin estimates: P₀ > 30 s in most cores. [Heger et al. 2005, Ott et al. 2006]
- MHD explosion a GRB precursor?
- Limitations: Resolution does not allow to capture MRI in VULCAN/2D; Simulations 2D and Newtonian.

Blowing up Massive Stars: Core-Collapse SN Mechanisms

Introduced by:

[Colgate & White 1966, Arnett 1966, Wilson 1985, Bethe & Wilson 1985]

Magnetorotational Mechanism

[LeBlanc & Wilson 1970, Bisnovatyi-Kogan et al. 1976, Meier et al. 1976, Symbalisty 1984]

Acoustic Mechanism

[proposed by Burrows et al. 2006, 2007; not (yet?) confirmed by other groups/codes]

Setting the Stage: SASI

[e.g., Burrows et al. 2006, 2007bc, Ott et al. 2006]

Time = -0.50 ms

Width = 50.00 km

PNS core oscillations, Burrows et al. 2006, 2007; Ott et al. 2006

Acoustic Mechanism

C. D. Ott @ Probing NSs with GWs - CGWP Penn State 2009/06/19

 [Burrows et al. 2006, 2007b/c, Ott et al. 2006]
 SASI-modulated supersonic accretion streams and SASI generated turbulence excite lowest-order (I=1) g-mode in the PNS. f ≈ 300 Hz.

- g-modes reach large amplitudes
 ~500 ms —1 s after bounce.
- Damping by strong sound waves that steepen into shocks; deposit energy in the stalled shock.
- ~1 B explosions at late times.
- (1) hard to simulate; unconfirmed,
 (2) possible parametric instability,

(2) possible parametric instability, limiting mode amplitudes. [Weinberg & Quatert'08]

Testing the Acoustic Mechanism

- So far no independent confirmation of the acoustic mechanism.
- However: unstable physical g-modes PNS shown to exist. [Ferrari et al. 2003, 2007; Yoshida et al. 2007]
- Key questions:
 - Do g-mode reach amplitudes as high as seen in our calculations?
 - Can the neutrino mechanism be made to work generically?
 - Effects of GR and 3D?
- Fundamental prerequisite for non-linear numerical tests of g-mode excitation: Grid must be singularity free & allow change of the inner core's geometric

A Few Words on Black Hole Formation

Black Hole Formation in Stellar Collapse

[O'Connor, Ott & Phinney in preparation]

1) There is no direct/prompt BH formation:

- Generic: M_{IC} = M_{PNS} at bounce ≈ 0.5 0.7 M_{SUN}.
 Set by nuclear physics, electron capture and rotation.
- Inner core easily stabilized by stiff core of the nuclear force (+ nucleon degeneracy).

Black Hole Formation in Stellar Collapse

[O'Connor, Ott & Phinney in preparation]

- 1) There is no direct/prompt BH formation.
- 2) Route 1 to a BH: Collapsar Type I [Heger et al. 2003]
- Explosion fails.
- BH forms on accretion timescale. τ_{BH} determined by (1) Stiffness of the nuclear EOS. (2) Accretion rate
 - <- progenitor structure.

3) Route 2 to a BH: Collapsar Type II

• Weak explosion, subsequent fall-back accretion. [Zhang & Woosley 2008]

Simulations of Black Hole Formation in Failing Core-Collapse Supernovae

[O'Connor, Ott & Phinney in preparation, see also Sumiyoshi et al. 2006, 2007, 2008, Fischer et al. 2009]

 Parameter study underway in 1D: Dependence on progenitor structure/mass, metallicity, nuclear EOS stiffness, neutrino heating.

Simulations of Black Hole Formation in Failing Core-Collapse Supernovae

[O'Connor, Ott & Phinney in preparation, see also Sumiyoshi et al. 2006, 2007, 2008, Fischer et al. 2009, Sekiguchi & Shibata 2005, 2008]

Gravitational Waves from Stellar Collapse, Core-Collapse Supernovae and Protoneutron Stars

[Ott 2009a , Class. Quant. Grav. and Ott 2009b, arXiv:0905.2797]

A SN Theorist's GW Wishlist

- Explosion mechanism and its multi-D nature.
- Finite-temperature nuclear EOS.
- PNS structure and evolution to NS.
- PNS/NS magnetic fields.
- PNS rotation; birth spin of NSs.
- Black hole formation.

- Progenitor physics:
 - Nature: AIC, O/Ne, or Iron core.
 - Structure, rotational configuration.
 - Precollapse asphericities.

GW Emission Processes in Core-Collapse SNe

[Reviews: Kotake et al. 2006, Ott 2009]

- Rotating core collapse and core bounce
- Dynamical rotational 3D instabilities
- Postbounce convection and SASI
- Protoneutron star core pulsations
- BH formation
- Anisotropic neutrino emission
- Aspherical outflows
- Magnetic stresses

Bursts with "Memory"

C. D. Ott @ Probing NSs with GWs - CGWP Penn State 2009/06/19

GWs from Rotating Core Collapse & Bounce

[Ott et al. 2004, Kotake et al. 2003, 2004, Dimmelmeier et al. 2008, Dimmelmeier et al. 2007, Ott et al. 2007 etc.]

 Collapse: Angular momentum conservation leads to spin up & rotational deformation of inner

- At core bounce: Very large accelerations -> rapidly changing mass quadrupole moment.
- Most extensively studied GW emission in core collapse
- Always axisymmetric: ONLY h₊
- Simplest GW emission process: Rotation + Gravity + Stiffening of EOS.
- MHD effects: only for extreme t t_{box} precollapse magnetization._{[Kotake et al.} '04, Obergaulinger et al.'05, '06]

New Extended 2D GR Model Set

[Dimmelmeier, Ott, Marek, and Janka 2008, Dimmelmeier et al. 2007ab, Ott et al. 2007]

- >140 2D GR models with Y_e(ρ) parametrization.
- 6 presupernova models.
- Slow to very rapid rotation.
- Solid-body to moderately differential rotation.
- 2 finite-temp. nuclear EOSs.

Results

- GW signature of rotating collapse multi-degenerate.
- Key parameters:
 - Precollapse central Ω.
 - Precollapse iron-core mass/entropy.

NSs with GWs - CGWP Penn State 2009/06/19

PNS Spin and Rotational Instabilities

[Dimmelmeier et al. 2008, Ott et al. 2007, Ott et al. 2006]

High T/|W| instabilities. Azimuthal modes $\infty \exp(im_{(p)})$. m=2 "bar-modes" $(T/|W|)_{dynamical} = 0.27$, $(T/|W|)_{secular} \approx 0.14$.

 Numbers hold roughly in GR and moderate differential rotation. [e.g., Baiotti et al. 2007]

C. D. Ott @ Probing NSs with GWs - CGWP Penn State 2009/06/19

Rapid Rotation and Nonaxisymmetric Dynamics

3D GR simulation Ott 2006, rendition by R. Kähler, Zuse Institute, Berlin

PNS Spin and Rotational Instabilities

[Dimmelmeier et al. 2008, Ott et al. 2007, Ott et al. 2006]

- Classical picture: High T/|W| instabilities. Azimuthal modes ∝ exp(im_φ). m=2 "bar-modes" (T/|W|)_{dynamical} = 0.27, (T/|W|)_{secular} ≈ 0.14. [e.g., Chandrasekhar 1969] Numbers hold roughly in GR and moderate differential rotation. [e.g., Baiotti et al. 2007]
- Can a real PNS reach such high T/|W|?

PNS Spin and Rotational Instabilities

[Dimmelmeier et al. 2008, Ott et al. 2007, Ott et al. 2006]

• Classical picture: High T/|W| instabilities. Azimuthal modes $\propto \exp(im_{\phi})$. m=2 "bar-modes" $(T/|W|)_{dynamical} = 0.27, (T/|W|)_{secular} \approx 0.14.$ [e.g., Chandrasekhar 1969] Numbers hold roughly in GR and moderate differential rotation. [e.g., Baiotti et al. 2007]

Can a real PNS reach such high T/|W|?

 Direct numerical simulation:
 No – collapsing cores hit rotational barrier.

[Ott et al. PRL 2007 & CQG 2007, Dimmelmeier et al. 2008]

 Critical T/|W| (secular/ dynamical) attainable during PNS cooling.

B-fields: rapid spindown (?)

C. D. Ott @ Probing NSs with GWs - CGWP Penn State

Low-T/|W| Rotational Instability

• Dynamical rotational instability at low T/|W|.

[e.g., Centrella et al. 2001, Saijo 2003, Saijo & Yoshida 2006, Ott et al. 2005, Ou & Tohline 2006, Cerdá et al. 2007b]

- Dominant m=1 mode; m={2,3} modes mixed in (radial & temporal variation).
- Mechanism: Corotation instability Resonance of unstable mode with background fluid at corotation point(s).
- Spiral density waves relationship to accretion and galactic disks?
 -> angular momentum transport.

 Note: PNS embedded in SN core and continuously accreting angular momentum. Cannot be described by an equilibrium NS model!

C. D. Ott @ Probing NSs with GWs - CGWP Penn State 2009/06/19

GW Emission vs. Detector Noise

 3D component: lower in amplitude than core-bounce GW spike, but greater in energy! Emission in narrow frequency band around 900—930 Hz (~2 x pattern speed of the unstable mode!) models.

Switching Gears:

GWs emitted by Convection and SASI

(Most) Calculations performed with the axisymmetric Newtonian VULCAN/2D radiation-(magneto)hydrodynamics code.

[Livne et al. '93, '04, '07, Burrow et al. '06, '07abc, Dessart et al. '06, ab '07, Ott et al. '06ab, '08]

Gravitational Waves from Convection & SASI

[Ott 2009, Marek et al. 2009, Kotake et al. 2007, 2009, Ott et al. 2006, Müller et al. 2004, Janka & Müller 1997]

- Prompt postbounce convection.
- Neutrino-driven convection & SASI in postshock region.
- Lepton-gradient driven convection inside the PNS.
- SASI modifies/distorts convection, leads to enhanced accretion.
- Turbulence/convection/SASI are "stochastic" sources of GWs; impossible to template.

Convection in Postbounce Supernova Cores

[Ott 2009, Marek et al. 2009, Kotake et al. 2007, 2009, Ott et al. 2006, Müller et al. 2004, Janka & Müller 1997]

• Solberg-Høiland criterion for instability:

$$N^{2} + \frac{1}{r^{3}} \frac{d}{dr} j^{2} < 0 \quad j = \Omega r^{2} \qquad N^{2} = \frac{g}{p\gamma} \left(\frac{\partial p}{\partial s} \Big|_{\rho,Y_{i}} \frac{ds}{dr} + \frac{\partial p}{\partial Y_{i}} \Big|_{\rho,s} \frac{dY_{i}}{dr} \right)$$
-> rotation generally damps convection! (Brunt-Väisäla Frequency)
$$\sum_{\substack{i=0 \\ i=0 \\$$

C. D. Ott @ Probing NSs with GWs - CGWP Penn State 2009/06/19

	Сс	onvecti	on & SASI	(cont'd)	[Ott '09, see also
	10.0			s15WW95 s15WW95HR	Marek et al. 2009]
	char (10 ⁻²²)	MMM			$h_{\rm char} = \sqrt{\frac{2}{\pi^2} \frac{1}{D^2} \frac{G}{c^3} \frac{dE_{\rm GW}}{df}}$
	بط 0.1	— Initial LIGO — Advanced LIG	o		
		100	f (Hz)	1000	
Process	Typical $ h $	Typical f	Duration Δt	$E_{\rm GW}$	Limiting Factors
	(at 10 kpc)	(Hz)	(ms)	$(10^{-10} M_{\odot} c^2)$	or Processes
\mathbf{Prompt}	$10^{-23} - 10^{-21}$	50 - 1000	$0 - \sim 30$	$\lesssim 0.01 - 10$	Seed perturbations,
Convection	(Emission	characteristics	depend on seed pert	surbations.)	entropy/lepton gradient rotation
PNS	$2-5\times 10^{-23}$	300 - 1500	500 - several 1000	$\lesssim 1.3(\frac{\Delta t}{1s})$	rotation,
Convection					BH formation,
					strong PNS g -modes
Neutrino-	$10^{-23} - 10^{-22}$	100 - 800	$100 - \gtrsim 1000$	$\gtrsim 0.01(\frac{\Delta t}{100ms})$	rotation,
driven	(peaks up			$\lesssim 15(\frac{\tilde{\Delta}t}{100ms})$	explosion,
Convection	to 10^{-21})			2000	BH formation
and SASI					

Switching Gears:

GWs emitted by Anisotropic Neutrino Emission and Large-Scale Asymmetries

(Most) Calculations performed with the axisymmetric Newtonian VULCAN/2D radiation-(magneto)hydrodynamics code.

[Livne et al. '93, '04, '07, Burrow et al. '06, '07abc, Dessart et al. '06, ab '07, Ott et al. '06ab, '08]

GWs from Anisotropic Neutrino Emission

[Epstein 1978, Burrows & Hayes 1996, Janka & Müller 1997, Müller et al. 2004, Ott 2009, Kotake et al. 2007, 2009]

GW

"Memory"

 Any accelerated mass-energy quadrupole will emit GWs. Anisotropic neutrino radiation:

$$h_{+,e}^{TT}(t) = \frac{2G}{c^4 D} \int_{-\infty}^{t-D/c} \alpha(t') L_{\nu}(t') dt'$$

$$lpha(t) = rac{1}{L_
u(t)} \int_{4\pi} \Psi(artheta',arphi') rac{dL_
u(ec{\Omega}',t)}{d\Omega'} d\Omega'$$

- Anisotropic neutrino emission in core-collapse SNe:
 - Convective overturn & SASI
 - Rapid rotation
 - Large-scale asymmetries

 $S_n \nu_e 27.5 \text{ MeV}$

GWs from Aspherical Outflows

[Burrows & Hayes 1996, Fryer et al. 2004; in the MHD context: Kotake et al. 2004, Obergaulinger et al. 2005, 2006]

- Precollapse inhomogeneities in nuclear silicon/oxygen burning may be large, leading to density perturbations O(10%). [Bazan & Arnett '97, Meakin et al. '06].
- May result in asymmetric explosions (-> pulsar recoils) and emission of GW burst (with memory!) from mass motions and neutrinos.
- Somewhat unexplored: Only 2 studies; most stellar evolution is done in 1D. Would need large parameter study.
- Aspherical outflows also in jet-driven explosions.

Switching gears again:

GWs emitted by Protoneutron Star g-Mode Pulsations (in the context of the 'Acoustic Mechanism' Burrows et al. 2006, 2007, Ott et al. 2006)

Calculations performed with the axisymmetric Newtonian VULCAN/2D radiation-(magneto)hydrodynamics code.

[Livne et al. '93, '04, '07, Burrow et al. '06, '07abc, Dessart et al. '06, ab '07, Ott et al. '06ab, '08]

PNS g-modes and the Acoustic Mechanism

[Burrows et al. 2006, 2007b/c, Ott et al. 2006]

GWs from PNS core g-modes: The GW Signature of the Acoustic Mechanism

- Core bounce: prompt convection.
- Convection: PNS and v-driven.
- SASI
- g-modes:
 l=2 components
 emit GWs.
- But: g-modes may saturate at low level. [Weinberg & Quatert 2008]

GW Spectra and LIGO Sensitivity

• $E_{GW} \sim 10^{\text{-8}} - 10^{\text{-6}} \; M_{SUN} c^2$, one model 8 x 10^{\text{-5}} \; M_{SUN} c^2.

• Progenitor mass (= accretion rate) dependence.

Time-Frequency Analysis of the GW Power Spectrum

Modelss15.0WHW02

Can we use GWs as Indicators for the Core-Collapse Supernova Explosion Mechanism?

[Ott 2009, arXiv:0905.2797]

Blowing up Massive Stars: Core-Collapse SN Mechanisms

[Ott 2009, arXiv:0905.2797 and CQG Topical Review]

Neutrino Mechanism

Magnetorotational Mechanism

Acoustic Mechanism

Blowing up Massive Stars: Core-Collapse SN Mechanisms

[Ott 2009, arXiv:0905.2797 and CQG Topical Review]

Dominant GW Emission Process(es)

Convection and SASI.

Magnetorotational Mechanism

> Acoustic Mechanism

Some Observational Aspects

Core-Collapse Supernova Rates

- Local group of galaxies: $V \sim 30 \text{ Mpc}^3$
 - Milky Way, Andromeda (M31), Triangulum (M33)
 - + \sim 30 small galaxies/satellite galaxies (incl. SMC & LMC).

Galaxy	Distance	Core-Collapse SN Rate	
-	(kpc)	$(100 \text{ yr})^{-1}$	
Milky Way	0-~15	0.50-2.50	
LMC	~ 50	0.10 - 0.50	
SMC	~ 60	0.06 - 0.12	
M31	~ 770	0.20 - 1.20	
M33	$\sim \! 840$	0.16 - 0.68	
IC 10	~ 750	0.05 -0.11	Compi
IC 1613	\sim 770	~ 0.04	long lis
NGC 6822	\sim 520	~ 0.04	e.g. Ca den Be

Compiled from long list of references, e.g. Cappellaro et al., den Bergh & Tammann.

- Local group: worst case 1 SN in 90 years, best case 1 SN in 20 years.
- Most local group events with ~100 kpc from Earth.

Nearby Core-Collapse Supernovae

C.D. Ott @ Probing NSs with GWs - CGW

SNR Scaling: Rotating Collapse & Bounce

SNR Scaling: PNS Pulsations

C.D. Ott @ Probing NSs with GWs - CGWP Penn State 2009/06/19

SNR Scaling: Convection & SASI

C. D. Ott @ Probing NSs with GWs - CGWP Penn State 2009/06/19

Summary and Remarks

- Multi-D core-collapse SN simulations are maturing -> 3 potential explosion mechanisms: v, MHD, acoustic
- The GW signature of the 3 considered mechanisms is likely to be mutually exclusive.
- Galactic core-collapse SN would allow to constrain SN mechanism.
- Problem: Galactic SN rate: 1 in ~40 years.
 Local group: 2 in ~40 years.
 - -> Need to go out to 3-5 Mpc where rate jumps to 1 in ~2 years. Further problem: adv. LIGO not sufficiently sensitive:

Need more adv. LIGO sensitivity from ~500 to ~1000 Hz.

- Status of the modeling of GW emission processes:
 - Rotating collapse: getting robust. Convection, SASI: need 3D models.
 - All other mechanisms: need more simulations to understand systematics and emission characteristics.
 - Are we missing something?

Bonus: The Lowest-Mass Neutron Stars

- Observations: There are some NSs with M < ~1.3 M_{SUN}.
 -> 4U1538-52: 0.9±0.2 M_{SUN}.
 -> B1756-2251: 1.2±0.01 M_{SUN}.
 -> J1141-6545: 1.3±0.01 M_{SUN}.
- Factors determining the NS mass:
 - Nuclear physics, electron capture (progenitor entropy), rotation during collapse -> size of the inner core at bounce: $0.45 0.75 M_{SUN}$.
 - Time between core bounce and explosion. Accretion rate: $O(1 M_{SUN}/s)$.
 - Fallback after explosion (perhaps \sim 0.1 M_{SUN} and more).
- Most likely progenitors:
 - AIC: Accretion induced collapse of (super-Chandrasekhar) O/Ne WD
 - Collapse of O/Ne core of evolved low-mass massive star ~6-8 M_{SUN} .
- Some AIC results:
 - Dessart et al. 2006: 2 models simulated; 1.30 M_{SUN} and 1.39 M_{SUN} .
 - Abdikamalov et al. 2009: large GR model set. $0.9 1.1 M_{SUN}$.

Niels Bohr International Academy

Summer School

on Stellar Collapse, Compact Objects, Supernovae, and Gamma-Ray Bursts

August 17 – 21, 2009

Niels Bohr Institute University of Copenhagen Copenhagen, Denmark

Lecturers

David Arnett (Arizona) Vassiliki Kalogera (Northwestern) James Lattimer (Stony Brook) Matthias Liebendörfer (Basel) Daniele Malesani (Dark Cosmology Centre/NBI) Feryal Özel (Arizona) Maximilian Ruffert (Edinburgh) Anna Watts (Amsterdam)

Registration: www.compschool2009.org

Registration Deadline: July 1, 2009.

Local Organizers

Anja Andersen (NBI/DARK), Søren Brandt (DTU Space), Jacob Trier Frederiksen (NBI), Steen Hannestad (Århus), Christian D. Ott (NBI/Caltech), Christopher Pethick (NBI/NORDITA) and Thomas Tauris (NBI)

Contact: compschool2009@nbi.dk

Niels Bohr Institutet Dark Cosmology Darish Astrophysics Research School DTU Space National Space Institute

MICRA 2009

Microphysics in Computational Relativistic Astrophysics

August 24 – 28, 2009

Summer Workshop at the Niels Bohr International Academy Copenhagen, Denmark

Towards reliable computational models of Stellar Collapse, Neutron Stars, Compact Binary Coalescense, and Gamma-Ray Burst Central Engines

The Nuclear Equation of State Neutrino Transport and Microphysics Nuclear Reactions and Reaction Networks GRMHD, Subscale and Accretion Physics

> Registration: www.micra2009.org

Scientific Advisory Committee

David Arnett (Arizona), Axel Brandenburg (NORDITA), Adam Burrows (Princeton), Joan Centrella (NASA/Goddard), Wick Haxton (U of Washington), James Lattimer (Stony Brook), Karlheinz Langanke (GSI), Åke Nordlund (NBI), Sanjay Reddy (LANL), and Katsuhiko Sato (Tokyo)

Local Organizing Committee

Jacob Trier Frederiksen (NBI), Christian D. Ott (NBI/Caltech), and Christopher Pethick (NBI/NORDITA)

Contact: micra2009@nbi.dk