Isolated Neutron Stars: Calvera and Beyond

Böb Ruțlédge McGill University

Collaborators: Derek Fox and Andrew Shevchuk (PSU) Monica Turner (McGill) Jason Hesseils, Ben Stappers

X-ray Observations of Isolated Compact Objects

- Isolated Compact Objects are presumably remnants of stellar evolution.
- Isolated objects are unaffected by the evolution of a binary companion (such as in LMXBs), and they can provide a "pristine" look at the properties of "neutron stars" -- generically, the compact objects which are the result of supernovae at the end of a massive star's H-burning lifetime.

What is an "Isolated Neutron Star", and what does it have to do with Gravity Waves?

- Stellar Evolution gives $\sim 10^{9}$ neutron stars formed in supernovae in our galaxy over its history. Perhaps (?) 10^{9} LIGO targets? Where are they all?
- Isolated Neutron Stars (INSs) are an observationally defined class of compact object:
- Discovered in the X-ray band (kT~50-600 eV).
- Not a radio pulsar
- No stellar companion (evidence: no, or little optical emission)
- Summary: INSs result from detection of compact objects through thermal emission from their surface.

INSs: Promising Gravitational Wave Sources?

- Con: unlike LMXBs and radio pulsars, the spin periods are (in general) not measured initially (or at all). Thus detecting GWs from INSs is only better from a completely blind all-sky search, by having a direction.
- Pro: We don't have strong observational constraints on the birth magnetic field distibution of neutron stars. INSs are where the golden "gravitars" would be discovered.
- Pro: Expected to be many of them (the entire NS population) and so they can be very nearby compared with LMXBs and other rare compact objects (aids detection of weak sources).
- Pro: Emission is of thermal emission - unbeamed. Detectable in all directions.

Some quick Neutron Star Accounting

- Number of Neutron stars produced in SNe in our galaxy: 10^{9}
- Number observationally discovered as radio pulsars: ~2000
- Number observationally discovered as X-ray binaries: ~500
- Number observationally discovered as INSs: ~10
- Number remaining to be observationally discovered: 109-2000-500-10 =

Why search for compact objects as INSs?

- "They cannot hide". All compact objects accrete material from the interstellar medium ("Bondi-Hoyle Accretion"). This provides a "rock bottom" luminosity, with an effective temperature in the X-ray band:

$$
L_{X}=\dot{M} \frac{G M_{N S}}{R_{N S}}
$$

- Classical Bondi-Hoyle Accretion Rate:

$$
\dot{M} \approx \frac{n}{v^{3}} \begin{gathered}
\begin{array}{c}
\text { Set by the the amount of mass } \\
\text { enclosed in a radius }
\end{array} \\
\text { set by the free-fall time (amount of time matter falls freely onto } \\
\text { the NS) equal to the crossing time. }
\end{gathered}
$$

Prediction: Should detect 700-7000N_9
INSs in ROSAT All Sky-Survey

So where are all these INSs? Only 8 Detected to date

- Modern upper limit: <46 INSs in the RASS/BSC (Rutledge et al 2003, Turner et al 2009).
- Two partial explanations for this discrepancy:

- (1) Better radio pulsar velocity measurements find typical v~380 km/s. A factor of 9 greater velocity, is a factor of 700 smaller X-ray luminosity!

- (2) MHD simulations show plasma instabilities in ISM accretion, (400 (toplich increases the accretion timescale dramatically from a simple "free-fall" timescale. This further decreases the accretion rate -- by ~x100. (Perna et al 2003).

Population Synthesis implies the observed INSs are not powered by accretion, but instead by natal cooling

Note: $10^{6} \mathrm{~K}=86 \mathrm{eV}$

- "Non-Exotic" neutron stars (pure betaequalibrium core matter)
- Cools after birth in a SNe for $\sim 10^{6}$ yrs, at a temperature of about $10^{6} \mathrm{~K}$.
- However, note that it is observationally challenging (and has not been done) to distinguish between accretion power and pure cooling.
- Probably, the best evidence is that one INS -- RXJ 1856 -- has a velocity vector which would place it in a nearby open cluster $\sim 500,000 \mathrm{yrs}$ ago.
- Implication: for every 1 cooling INS, there are $10^{4}-10^{5}$ powered by accretion from the ISM.

These Neutron Stars are Observed through as many different, sometimes overlapping, observational classes

- Radio pulsars (radio emission mechanism associated with the presence of a magnetic field).
- X-ray binaires (optical stellar companion, and accretion onto the compact object)
- Magnetars (processes associated with magnetic field decay).
- But what about neutron stars with weak, or no, magnetic field? Which are not in an optical binary?
- The goal of searches for INSs is to discover compact objects which are not observable any other way.

How do discover INSs: Observational Aporoach

- The ROSAT All-Sky-Survey observed 92% of the sky to a flux limit of $2 \times 10^{-12} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
- 18,802 X-ray sources in the "Bright Source Catalog", (<1 false source in the catalog).
- We use a statistical approach (Rutledge et al 2001; Haakonsen \& Rutledge 2009) to calculate the probability of association between the X-ray sources, and nearby optical (USNO-A2), radio (NVSS), and infrared (IRAS and 2MASS) sources. "As Bright or Brighter, as Close or Closer".

$$
P_{\mathrm{no}-\mathrm{id}}
$$

How do discover INSs: Observational Approach

- Perform SWIFT X-ray observation of unidentified ROSAT All-Sky Survey Bright Source Catalog X-ray sources (positional uncertainties -- 13").
- Use better localization (5" with XRT, and <1 " if there is a UVOT counterpart) to identify UV, optical, or infrared counterpart (in UVOT image, or 2MASS catalog, or DSS).
- X-ray sources with high F_X/F_UVOT, and no 2MASS or DSS counterparts.
- To date, we have observed ~200 X-ray sources, identifying mostly low-mass stars, a few AGN, but also 3 new X-ray clusters. (Shevcuk et al, in prog; Letcavage et al, in prog).

Observations of Calvera

- First detection (1992) in the ROSAT All-Sky Survey as 1RXS J141256.0+792204.
- We observed with SWIFT/XRT in August 2006, obtained a 5" error circle which excluded all nearby counterparts (DSS, 2MASS, NVSS). No UVOT counterpart (UVM2>21m).
- In Dec 2006, we obtained deep Gemini-North imaging (DDT time) in g-band (1 hour integration)

Gemini North Multi-Object Spectrograph.

- SWIFT Error circle (90\% confidence) contained $1 \mathrm{~g}=24.8$, and two other much fainter (B\&C) objects. (Plate limit: $\mathrm{g}>26.3,3$ sigma).
- In early 2007, Chandra/HRC-S DDT observation (2ksec) localized the Xray source to an error ellipse which excluded all infra-red objects.
- Chandra positional uncertainty dominated by statistical uncertainty in Calvera's position, using relative astrometry with a 2' off-axis source.
- FX/F_V > 8700 -- excludes all known source classes other than isolated neutron stars (INSs).

$$
L_{x}=4 \pi R_{\mathrm{bb}}^{2} \sigma T_{\mathrm{eff}}^{4}
$$

What Type of Source is Calvera?

- The observational approach (arcsec localization, followed by deep optical imaging, to produce high FX/F_V limit) was chosen to find new INSs, like RX J1856.5-3754.
- No counter examples of high FX/F_V limit objects selected in this way which are not INSs exist in the literature; but clearly it is possible to find other types of compact objects.
- Basis for comparison: assume blackbody spectra (almost certainly not physically true!) and compare bbody spectral parameters.
- Note: to say *anything* about the properties of the source, one must compare either R_bb or L_x with those of a known class. This directly implies a distance to Calvera.
- For INSs -- assume Rbb are all identical to RXJ 1856, and a distance to RXJ 1856 of 170 pc (cf. Kaplan et al 2007).

Summary of Properties of SWIFT J1412+7922

- Uncertainty radius (here) includes 0.14" GeminiUSNOB registration uncertainty.
- Effective temperature is the highest among the INSs (215 eV, vs. 117 eV for J1308).
Parameters confirmed with
recent, higher S/N
Chandra Observations
(Shevchuck et al, in prog)

Table 1. Characteristics of Calvera

Characteristic	Value
Right Ascension (J2000)	$14^{\mathrm{h}} 12^{\mathrm{m}} 55.885$
Declination (J2000)	$+79^{\circ} 22^{\prime} 04^{\prime \prime} 10$
Uncertainty radius (90\%)	$0.57^{\prime \prime}$
UVOT Limit	$f_{\text {UVM } 2}<1.3 \times 10^{-17} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
Gemini Limit (3)	$g>26.3 \mathrm{mag}$
Blackbody Energy Spectrum	
$k T_{\text {eff }}$	$215 \pm 25 \mathrm{eV}$
Normalization	$7.22_{-1.8}^{+2.4}\left(R_{\mathrm{km}} / D_{10 \mathrm{kpc}}\right)$
Corrected X-ray Flux	$1.2 \times 10^{-12}\left(\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} ; 0.1-2.4 \mathrm{keV}\right)$
N_{H} (fixed)	$3 \times 10^{20} \mathrm{~cm}^{-2}$
C-statistic	23.97
Power Law Energy Spectrum	
Photon Slope α	2.8 ± 0.3
Corrected X-ray Flux	$2.5 \times 10^{-13}\left(\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} ; 2-10 \mathrm{keV}\right)$
N_{H} (fixed)	$3 \times 10^{20} \mathrm{~cm}^{-2}$
C-statistic	30.03

Galactic Distribution of X-ray "Dim" Isolated Neutron Stars (INS), if Calvera is like them.

Table 2. Galacto-centric Positions of INSs and Calvera in an INS Interpretation

Source	$\begin{aligned} & k T_{\text {eff }} \\ & (\mathrm{eV}) \end{aligned}$	F_{X}	$\begin{gathered} (1, \mathrm{~b}) \\ (\mathrm{deg}, \operatorname{deg}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{kpc}) \end{gathered}$	$\begin{gathered} Y \\ (\mathrm{kpc}) \end{gathered}$	$\begin{gathered} Z \\ (\mathrm{kpc}) \end{gathered}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{kpe}) \end{gathered}$	$\begin{gathered} R_{c} \\ (\mathrm{kpc}) \end{gathered}$	Refs.
1RXS J0420.0-5022	45	5	258, -44	-0.36	8.58	-0.35	0.51	8.59	1
RX.J0720.4-3125	90	100	244, -8	-0.45	8.72	-0.07	0.50	8.73	2
RXJ0806.4-4123	95	2.8	257, -5	-3.29	9.26	-0.30	3.39	9.83	3
1RXS J130848.6+212708	117	45	339, 83	-0.06	8.35	1.29	1.30	8.45	4
Calvera	215	12	118, 37	5.9	11.66	5.08	8.43	14.04	present
1RXS J1605.3+3249	91	88	53, 48	0.30	8.27	0.42	0.56	8.29	5
1RXS J185635.1-375433	63.5	210	359, -17	0.00	8.34	-0.05	0.167	8.34	6
1RXS J214303.7+065419	91	87	$63,-33$	0.42	8.29	-0.31	0.56	8.30	7

[^0]
R_bb vs. Lx

- R_bb is a function of distance (which is unknown).
- If R_bb is comparable to RX J1856, this requires a large distance -- d=8.4 kpc, which implies a large $\mathrm{z}=5.1 \mathrm{kpc}$.
- If $L _X$ is comparable to magnetars (1e35 ergs/ sec), d=66 kpc!

Galactic Distribution of X-ray "Dim" Isolated Neutron Stars, if Calvera is like them.

- Z=5.1 kpc! (d=8.4 kpc)
- This requires a spatial velocity of >5100 km $\mathrm{s}-1$.
- Or, it requires a cooling time > 13 Myr (kT remains 215 eV -- still higher than any known INS.)

kTeff vs. R_bb

- kTeff is lower than CCOs and magnetars.
- kTeff is greater than INSs
- But, comparable to MSPs in 47 Tuc.
- Comments on kTeff vs. Rbb for CCOs and Magnetars.

Calvera: Observational Conclusions

- X-ray properties of Calvera are seriously challenging to
explain, if the object is an a very high spatial velocity, or very long cooling time).
- X-ray properties are even more challenging to standard-candle magnetars ($\mathrm{d}=66 \mathrm{kpc}$), requiring even higher spatial velocity or longer cooling time.
- Could be a Compact Central Object, but without a supernova remnant? Runaway OB star out of the disk? So what is a CCO? Simply a Compact object of arbitrary size?
- Object is *most* consistent with being a nearby ($80-260 \mathrm{pc}$) radio pulsar. However, it is undetected in a 1.4 GHz pulsar search with Westerbork (Hessels et al, 2007, in press), implying it is in the lowest 1\% of radio pulsar luminosity distribution. Thus, it would have to be an off-beam radio pulsar -- such objects must exist.
- If it is an MSP, it is (tied for) X-ray brightest MSP in the sky, is the closest Northern MSP at <260 pc -- an interesting X-ray target, potentially useful for LIGO.
- If the object is *not* a radio pulsar, then it is highly uncertain what type of compact object this is.

A few, but not many, more where that came from!

- We included in our analysis 150 "control sources", placed randomly on the sky, which mimic INSs.
- Of these, ~ 50 satisfied the P_noid selection criterion. This means, for every 1 INS in our selected sample, there are 3 INS in the RASS/BSC.
- After determining how many INSs there are in our selected sample (~10), this permits us to place an upper-limit on the number of INSs in the RASS/BSC, of <46 (90\% confidence).
- At present, we are following up on ~ 10 promising INS candidates which resulted from the SWIFT work.
- Based on present limits, INSs will be discovered in the upcoming eROSITA (launch 2011) all-sky survey, which, based on the present 8-50 INSs limits in the RASS/BSC, will discover 240-1500 INSs. Results beginning 2013.

[^0]: Note. - Galactic positions of the seven INSs, plus Calvera, under the assumption all have the same $R_{\text {bb }}$ as 1RXS J185635.1-375433 at a distance of 167 pc (see text). Reading across the columns, we give the source name, the measured effective temperature, the X-ray flux in units of $10^{-13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}(0.1-2.4 \mathrm{keV})$; the galactic longitude and latitude ($1, \mathrm{~b}$); the resulting galactic three dimensional coordinates X, Y, and Z, where ($0,0,0$) is Galactic Center, and ($0,8.5,0$) is the Sun's location (Taylor \& Cordes 1993); the source's distance from the Sun d; and galacto-centric distance R_{c}, with the relevant references. These positions are plotted in Fig. 4.

 References. - 1, Haberl et al. (2004); 2, Haberl et al. (2006); 3, Haberl et al. (2004); 4, Schwope et al. (1999); 5, Motch et al. (1999); 6, Burwitz et al. (2003); Kaplan et al. (2007); 7, Zampieri et al. (2001)

