A Model of Extragalactic Background Light: >0.1 eV

Soeb Razzaque U.S. Naval Research Lab

Collaborators: Charles D. Dermer (NRL) and Justin Finke (NRL)

Cosmic Energy Densities

Electromagnetic \rightarrow from radiative processes

Why do we care?

Affects propagation of ultrahigh-energy photons/cosmic-rays from their sources to Earth

Important for TeV γ-ray Astronomy Charge particle Astronomy

Important for source modeling, UHE emission mechanism

Cosmological probes, star formation, dust absorption

TeV y-ray Spectra

□ TeV γ-rays are absorbed by background photons → limited horizon
□ Measured TeV spectra from distant sources are steepened from production
→ Source modeling, Cosmic-ray acceleration mechanism

Cosmic-ray Spectra

□ Energy losses by ultrahigh-energy cosmic-rays → limited horizon (GZK effect)
□ UHECR sources → Source modeling, Cosmic-ray acceleration mechanism

Popular Models

What we propose to do

Calculate the total number of blackbody photons per unit energy interval emitted by a star of mass M born at redshift z over its main sequence lifetime

$$\frac{dN(\epsilon, M)}{d\epsilon} = \int_{\max[0, z_{d}(M)]}^{z} dz' \left| \frac{dt}{dz'} \right| \frac{dN(\epsilon', M)}{d\epsilon' dt} (1 + z')$$

Number density of photons reaching us from all stars in all epochs

EBL starlight

EBL infrared is reprocessed starlight by galactic dust

What we propose to do

Calculate the cosmic energy output or luminosity density (W Mpc⁻³) in starlight by the galaxies in the local ($z\sim0$) universe.

$$\epsilon L_{\epsilon} = \epsilon^2 \mathcal{N} \int_{M_{\min}}^{M_{\max}} dM \left(\frac{dN}{dM}\right)$$
$$\times \int_{0}^{z_{\rm b}(M)} dz' \left|\frac{dt}{dz'}\right| \psi(z') f_{\rm esc}(\epsilon') \frac{dN(\epsilon', M)}{d\epsilon' dt} (1+z')$$

- ➔ Choose models for star formation rate and initial mass function
- Compare luminosity density models with point source data Fix normalization parameter
- ➔ Compare EBL model with diffuse photon data
- ➔ Find a "best fit" EBL model

Stellar Relations

 M/M_o

Initial Mass Function

Star Formation Rate

Choice of A Model

		SFR		IMF	
Model A	Cole et al. 2001		Salpete	er A	
Model B	Cole et al. 2001		Salpete	Salpeter A	
	(fit by Hopkins & Beaco	om 2000	6)		
Model C	Cole et al. 2001		Baldry a	Baldry &	
	(fit by Hopkins & Beaco	om 2006	6) Glazeb	rook 2003	
Model D	Hopkins & Beacom 200)6	Salpete	er A	
Model E	Hopkins & Beacom 200)6	Baldry a Glazeb	& rook 2003	

Dust Attenuation

15

Local Energy Output

Integrated up to *z***=0, no adjustable free parameter!**

EBL Data and Models

Local (z=0) EBL energy density with the same models as in local luminosity density. Again, no adjustable free parameter!

Single power-law M/L ratio

Bressan et al. '93 M/L ratio

Best "Eyeball Fit" Model

Evolving EBL

Fit to AGN Data

Summary and Outlook

- We proposed a very simple analytic model of EBL, which reasonably explains data
- ॐ Easy to calculate evolution of EBL with redshift
- Solution of infrared emission from galactic dust heated by starlight is underway
- Sour comments and suggestions to improve the model are greatly appreciated