Microquasars and Unidentified TeV Sources

Chuck Dermer (NRL)

TeV Unidentified Sources Workshop

Penn State University

June, 2008

Microquasars: X-ray binaries with jets

Refs. and acknowledgments: Felix Mirabel talk; Isabelle Grenier Merida ICRC talk; work with Markus Böttcher, Swati Gupta

Discovery of Microquasars

Mirabel, Rodriguez, et al, 1992

WEEKLY JOURNAL OF SCIENCE

VLA: λ6cm

A 'MICROQUASAR' AT THE GALACTIC CENTRE

1E 1740.7: LMXB

Quasar-Microquasar Analogy

Years

Mirabel & Rodriguez (Nature 1998)

The scales of length and time are proportional to M_{BH} $R_{sh} = 2GM_{BH}/c^2$; $\Delta T \alpha M_{BH}$

Unique system of equations: The maximum color temperature of the accretion disk is:

> $T_{col} \alpha (M/10M_{\odot})^{-1/4}$ (Shakura & Sunyaev, 1976)

For a given Eddington ratio I_{jet} : $L_{Bol} \alpha I_{jet}$; $I_{jet} \alpha M_{BH}$; $B \alpha M_{BH}^{-1/2}$; $t_{jet} \alpha M_{BH}$ (LMXB µOSR model)

APPARENT SUPERLUMINAL MOTIONS IN \muQSRs AS IN QSRs ?

Superluminal Motion in the Galaxy

18-111-1994

27-111-1994

07-TV-1994

09-IV- 994

16-19-199/

-RELATIVISTIC ABERRATION FROM TWIN JETS SEEN TWO-SIDED

- μ OSR JETS MOVE ON THE SKY ~10³ TIMES FASTER THAN QSR JETS
- IN AGN AT D<100 Mpc JETS ARE RESOLVED AT ~50 R_{sh} (e.g. M87,Biretta)
- PHYSICS: NEED TO STUDY BHs ACROSS ALL MASS SCALES

Accretion-Jet Connection

•Triggers of jets are instabilities in the accretion disk (transition between low hard and high soft). The X-ray "spike" marks the onset of a shock through the compact steady jet

•Analogous accretion-disk/jet connection in 3C 120 Marscher (2002)

ANALOGOUS ACCRETION-JET CONNECTION IN 3C 120 ?

BUT ON TIME SCALES OF YEARS

Marscher, Marti et al. Nature 2002

TeV Emission from Galactic Center

None from 1E 1740.7-2942

GRS 1915+105 ↔ HESS J1912+101 (?) ↔ PSR J1913+1011

None from GRS 1915+105

Binary vs. Isolated Pulsars

Pulsars in Binaries: ~6 high mass incl. 1 (SMC) + 1 (GC) +

ref. George Pavlov

76 + 49 (125 recycled, incl. GC and field, resp.)

3 or 4 pulsars with high mass Be companions, e.g.,

B1259-63: $M_2 \sim 10$, e = 0.87, $\log \tau = 5.5$ J0045-73193: $M_2 \sim 8.8$, e = 0.81, $\log \tau = 6.5$ J 1740-3052: $M_2 \sim 10$, e = 0.58, $\log \tau = 5.5$

Binary fraction low due to disruption during formation Low likelihood to have both high mass + young pulsar

High-mass microquasars

		Table 1 Microquasars in our Galaxy						Ref. Paredes (2005)		
Name	Position (J2000.0)	$_{ m type}^{ m (a)}$	D (kpc)	$P_{ m orb}$ (d)	$M_{ m compact}$ (M_{\odot})	t Activity radio ^(b)	$eta_{ ext{apar}}$	$\theta^{(c)}$	Jet size (AU)	Remarks ^(d)
High Mass X-ray Binaries (HMXB)										
LS I +61 303	$02^{h}40^{m}31\overset{\text{s}}{.}66 + 61^{\circ}13'45\overset{\text{r}}{.}'6$	B0V +NS?	2.0	26.5	_	р	≥ 0.4	_	10 - 700	Prec?
V4641 Sgr	$18^{h}19^{m}21.48^{s}48 - 25^{\circ}25'36.''0$	B9III +BH	~ 10	2.8	9.6	\mathbf{t}	≥ 9.5	_	_	
LS 5039	18 ^h 26 ^m 15 ^s 05 -14°50′54.′′24	O6.5V((f)) +NS?	2.9	4.4	1 - 3	р	≥ 0.15	$< 81^{\circ}$	10 - 1000	Prec?
SS 433	$19^{ m h}11^{ m m}49\stackrel{ m s}{.}6 + 04^{\circ}58'58''$	evolved A? +BH?	4.8	13.1	$11 \pm 5?$	р	0.26	79°	$\sim 10^4 - 10^6$	${ m Prec} \ { m XRJ}$
Cygnus X-1	19 ^h 58 ^m 21.88 +35°12′05.′′8	O9.7Iab + BH	2.5	5.6	10.1	р	_	40°	~ 40	
Cygnus X-3	$20^{h}32^{m}25.78 + 40^{\circ}57'28.''0$	${ m WNe}$ +BH?	9	0.2	_	р	0.69	73°	$\sim 10^4$	

PSR 1259-63	Be X-ray binary	$P_{orb} = 3.5 \text{ yr}$	(not a microqu	uasar)
		- orb $ -$	(not a moroqu	aubur j

Low-mass microquasars

Table 1Microquasars in our Galaxy

Name	Position (J2000.0)	$_{ m type}^{ m (a)}$	D (kpc)	$P_{ m orb}$ (d)	M_{compact} (M_{\odot})	Activity radio ^(b)	$\beta_{ m apar}$	$ heta^{(c)}$	Jet size (AU)	$\operatorname{Remarks}^{(d)}$
Low Mass X-ray Binaries (LMXB)										
Circinus X-1	$15^{h}20^{m}40^{s}.9$ -57°10'01''	Subgiant +NS	5.5	16.6	_	t	> 15	$< 6^{\circ}$	$> 10^4$	
XTE J1550-564	$15^{h}50^{m}58.70^{m}58.70^{m}$	G8-K5V +BH	5.3	1.5	9.4	t	> 2	_	$\sim 10^3$	XRJ
Scorpius X-1	$16^{ m h}19^{ m m}55\stackrel{ m s}{.}1$ 15°38'25''	Subgiant +NS	2.8	0.8	1.4	р	0.68	44°	~ 40	
GRO J1655-40	$16^{h}54^{m}00.25 - 39^{\circ}50'45.''0$	F5IV +BH	3.2	2.6	7.02	t	1.1	$72^\circ - 85^\circ$	8000	Prec?
GX 339-4	$17^{ m h}02^{ m m}49^{ m s}_{ m .}5$ -48°47′23″	_ +BH	> 6	1.76	5.8 ± 0.5	t	-	_	< 4000	
1E 1740.7-2942	$17^{h}43^{m}54^{s}_{\cdot}83 -29^{\circ}44'42''_{\cdot}60$	_ +BH ?	8.5?	12.5?	—	р	-	_	$\sim 10^6$	
XTE J1748-288	$817^{h}48^{m}05^{s}.06$ -28°28'25.''8	- +BH?	≥ 8	?	> 4.5?	t	1.3	_	$> 10^4$	
GRS $1758 - 258$	$18^{h}01^{m}12^{s}_{\cdot}40 -25^{\circ}44'36''_{\cdot}1$	- +BH ?	8.5?	18.5?	_	р	_	_	$\sim 10^6$	
GRS 1915+105	$19^{h}15^{m}11.55$ +10°56′447	K-M III +BH	12.5	33.5	14 ± 4	t	1.2 - 1.7	766°-70°	$\sim 10 - 10^4$	Prec?

Ref. Paredes (2005)

VHE (>100 GeV) FROM γ -RAY BINARIES

160

LS 5039 with HESS

(Aharonian et al. Science 2005)

b (deg)

-0.5

-1

-1.5

18

17.5

LSI +61 303 with MAGIC

(Albert et al. Science 2006)

VHE emission is variable

•Both have compact objects with masses M < 4 M_o •Both are runaway HMXBs formed < 2 x 10⁶ yrs ago

Consistent with point source (< 50'') in TeV maps; much smaller compared with TeV PWNe

- $M_{BH} < 4 M_{\odot} \text{ or NS}$
- age < 2-3 Myr

LS 5039, e ~ 0.35

Orbital parameters of LS 5039: Casares et al. (2004), Grunstrom et al. (2007)

LSI +61°303; e ~ 0.72

Aharonian et al. 2005

Albert et al. 2005

LS 5039 EJECTED FROM THE GALACTIC PLANE?

V = 100-140 km/s; e~0.5; Mj = 2000-5000 Km/s $\rm M_{\odot}$; $\rm M_{ejected}$ in SN = 5-15 $\rm M_{\odot}$

Radio emission from LS 5039

Radio emission from LSI

simulated radio emission is given in the small box (Massi et al. 2004).

Radio emission from LSI

VHE from Compact Binaries

MICROQUASAR JET MODELS: Power by accretion (Bosch-Ramon)

- Particle energy in QSRs and μ QSRs are comparable (blazar-microblazar analogy)
- The kinetic power in μ QSRs is equal or larger than the radiated power
- Electrons in the jets are accelerated up to TeV energies
- LS 5039: jets are steady, two-sided, seem to have bulk motions of 0.2-0.3c as compact μ QSR jets, and no radio outbursts have been observed (Paredes et al.)
- Definitive proof: VHE emission from confirmed BHs (e.g Cyg X-1, V 4641,GRS 1915)
 MAGIC Obs. of Cyg X-1

PULSAR WIND MODEL: Power by rotational energy (Dubus, 2006)

- PSR B1259-63, LS 5039 & LSI +61 303 have compact objects with M < 4 M_{SUN}
- Time variability & x-ray spectrum of LSI +61 303 resemble those of young pulsars
- LSI +61 303 is a Be star like PSR B1259-63 & all known Be/X-ray binary are NSs
- But does not satisfactorily fit the GeV & radio wavelength fluxes in LSI & LS 5039
- Definitive proof: Detection of pulsations in LS 5039 & LSI +61 303

NEEDED: Period analysis on GLAST data of LS sources; higher sensitivity and angular resolugion radio images

massive γ -ray binaries

- jet
 - $e_{jet} + UV_* \rightarrow \gamma$
 - $p_{jet} + p_{wind *} \rightarrow \pi^0 \rightarrow 2\gamma$
- when closer to star on eccentric orbit
 - accretion rate \uparrow

MICROQUASAR **BINARY PULSAR** Cometary radio emmission Pulsar Relativistic jets y-rays Companion star Compact object of center Be star **Disk outflow** Ultraviolet and Accretion disk Pulsar optical emission /-rays

 $\gamma + \gamma_* \longrightarrow e^{\pm}$

(cf. PSR B1259-63) + UV \rightarrow %

 $e_{\text{wind pulsar}} + UV_* \rightarrow \gamma$ $p_{\text{wind}} + p_{\text{wind }*} \rightarrow \pi^0 \rightarrow 2\gamma$

acceleration zone between star and pulsar

Jet Model for High-Energy Radiation from Microquasars

LS 5039:

 $M_{BH} \approx 3.7 M_o$, D ≈ 2.5 kpc, P = 3.906 d, (Casares et al. 2005)

• Associated with 3EG J1824-1514 (Paredes et al. 2000) – new class of γ -ray sources?

Multiwavelength Spectrum of LS 5039

- Companion O7 Star (L \approx 7×10³⁸ ergs s⁻¹)
- Optical/UV stellar radiation is highly absorbed (T~40000 K)
- Radio emission from jets reaches 10 AU

Jet Model for LS 5039

- Leptonic Jet Model (as in blazars) Dermer & Böttcher (2006)
- Predicts stochastic variability of jet γ -ray emission
- Synchrotron radio/optical/X-ray emission
- •(in addition to thermal/nonthermal accretion disk and thermal stellar radiation)
- Compton-scattered origin of γ rays
 - Target Photons:
 - Accretion Disk
 - Stellar radiation field

cf. model of Paredes, Bosch-Ramon, and Romero (2006)

Assumptions of the Model

- 1. Jets are steady and oriented normal to orbital plane
- 2. Star and accretion disk treated as point sources of radiation
- 3. Nonthermal electrons isotropic in comoving jet frame have a fixed (broken power-law) distribution
- 4. Cascade processes negligible

γ Rays from Microquasars: Production and Attenuation

- \bullet Compton Scattering in KN regime for TeV γ rays
 - Companion Star Temperature = 39000 K = 3.4 eV
- Orbital Modulation of Compton Scattered radiation
 - Anisotropic stellar radiation field
- γγ Attenuation

Phase $\phi = 0$ High mass companion star closest to observer (Superior conjunction)

Böttcher and Dermer, ApJ Letters (2005)

γ-γ Pair Production Attenuation

Aharonian et al. 2006

Phase Dependence of Compton scattered stellar radiation

- Rapid decline when scattering in KN regime $E_{\rm KN} \cong \left(\frac{m_e c^2}{4 \times 2.7\Theta} \cong \frac{20 \text{ GeV}}{(1 - \cos \bar{\psi}')}\right)$
- Strong phase-dependent modulation of intensity and spectrum

Jet height $x_j = d$ = 2.5× 10¹² cm

Jet-Height Dependence of CSSR

- Gamma-ray nulling when target photons are almost exactly "tail-on"
- Phase-dependent modulation (by 10%) at $x_j = 5 \times 10^{14}$ cm (compared to $x = 10^{13}$ cm for $\gamma \gamma$ attenuation)

Model Fit to the Multiwavelength Spectrum of LS 5039

Fit assuming that EGRET and HESS data *are representative* of simultaneously measured SED

EGRET emission: highenergy extension of synchrotron spectrum

Combination of CSSR and SSC for TeV

Do not favor this model:

requires acceleration of electrons with maximal frequency and no break in synchrotron spectrum

Model Fit to the Multiwavelength Spectrum of LS 5039

Fit assuming that EGRET and HESS data *are different* between two epochs of measurement

• In accord with variability expected from leptonic model

 Predict orbital modulation of TeV γrays for inner jet model;

• Orbital modulation of GeV γ-rays for inner or extended jet model

• GLAST will quickly test this prediction

radiation components

- LS 5039
 - Dermer & Böttcher '06

Romero et al. '02 (too bright)

Cygnus X-1

- Paredes et al. '06
- competition between absorbed star IC and SSC contributions
 - stellar radiation best known
- much fainter low-mass binary systems
 - << visibility</p>

Grenier et al. '05

jet or wind?

- LSI $+61^{\circ}303 = PWN$
 - unresolved by Chandra
 - PWN-like in VLBA
- LS 5039
 - jet-like in radio
 - µqsr spectral behaviour

Dhawan '07

Dubus '06

Microquasar SEDs

• similar to PSR B1259-63

Colliding Wind Model

- Colliding wind scenario
 - Cold MHD wind (also in young pulsars
 - Shocked wind

Sierpowska-Bartosik & Torres 2008 Cascades: Bednarek /Sierpowska

$$\eta = \frac{L_{sd}}{c(\dot{M}_s V_s)}$$

Why no PWN?

LARGE-SCALE JETS IN CYGNUS X-1

Gallo, Fender et al. Nature 2005 Ring diameter = 5 pc

> 50% OF THE RELEASED ENERGY IS NOT RADIATED

LARGE-SCALE JETS IN GRS 1915+105 ?

Rodriguez & Mirabel (2006) Hot spots at ~ 50 pc

Cygnus X-1: a γ-ray black hole

Cygnus X-1 seen only one time with MAGIC in multiple pointings

Evidence for black-hole microquasars

Albert et al. '07

Microquasars vs. TeV X-ray Binaries

Pulsar vs. black hole in LS 5039, LSI (strong periodic TeV variability surprising for black hole microquasars) Leptonic vs. hadronic models: which is easier to fit SED? which is easier to fit orbital variability?

New orbital parameters for LS 5039 may affect modeling of gamma-gamma in LS 5039
TeV luminosity of microquasars ~ 1e36 ergs/s
Factor of 100 greater energy in spin-down power
Power requirements for cosmic rays

Two components of pulsar wind/OB star wind-wind interactions: shocked and unshocked wind

Look for Unidentified TeV sources in LMXBs, not HMXBs

Unidentifed TeV Candidate Sources in the Galaxy

Variable

LMXRBs as counterparts to variable intermediate latitude sources (Grenier, Kaufman, Bernado & Romero 2005)

Isolated accreting black holes in the Galaxy (Dermer 1997)

Rapidly rotating, charged black holes (Punsly 1998)

Evaporating black holes (isotropically distributed)

(HMXB/microquasar easily identified)

<u>Steady</u>

PWNe; Pulsars SNRs; GGRB Remant

Colliding Wind systems (slowly variable)