High Energy Emission

from Supernova Remnants

Patrick Slane (CfA)

SNRs: The (very) Basic Structure

Interstellar Material

Oxygen & Neon

formed by fusion in

outer core of star

Supernova

Blast Wave

and Swept-up

Shell

Iron forme

in explosior

• Pulsar Wind

- sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms
- Supernova Remnant
 - sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN; particles accelerated at forward shock generate magnetic turbulence; other particles scatter off this and receive additional acceleratio

Patrick Slane (CfA)

TeV Unidentified Sources Workshop - PSU (4-5 June 2008)

Pulsar

and) Nebula

Reverse

Shocks in SNRs

- Expanding blast wave moves supersonically through CSM/ISM; creates shock
 - mass, momentum, and energy conservation across shock give (with $\gamma {=} 5/3)$

$$\rho_1 = \frac{\gamma + 1}{\gamma - 1}\rho_0 = 4\rho_0$$
 $v_1 = \frac{\gamma - 1}{\gamma + 1}v_0 = \frac{v_0}{4}$

Shock

$$T_{1} = \frac{2(\gamma - 1)}{(\gamma + 1)^{2}} \frac{\mu}{k} m_{\rm H} v_{0}^{2} = 1.3 \times 10^{7} v_{1000}^{2}$$

P/_Q.

X-ray emitting temperatures

- Shock velocity gives temperature of gas
 can get from X-rays (modulo NEI effects)
- If cosmic-ray pressure is present <u>the</u> <u>temperature will be lower than this</u>
 - radius of forward shock affected as well

Shocks in SNRs

- Expanding blast wave moves supersonically through CSM/ISM; creates shock
 - mass, momentum, and energy conservation across shock give (with $\gamma {=} 5/3)$

$$\rho_1 = \frac{\gamma + 1}{\gamma - 1} \rho_0 = 4 \rho_0 \qquad v_1 = \frac{\gamma - 1}{\gamma + 1} v_0 = \frac{v_0}{4}$$
$$v_{ps} = \frac{3v_s}{4}$$

- Shock velocity gives temperature of gas

 can get from X-rays (modulo NEI effects)
- If cosmic-ray pressure is present <u>the</u>
- <u>temperature will be lower than this</u>
 - radius of forward shock affected as well

Diffusive Shock Acceleration

- Particles scatter from MHD waves in background plasma
 - pre-existing, or generated
 - by streaming ions themselves
 - scattering mean-free-path

$$\lambda = \eta r_g = \eta E / eB$$

(i.e., most energetic particles have very large λ and escape

see Reynolds 2008

$$\eta = \left(\frac{\delta B}{B}\right)^{-2} \ge 1$$

 Maximum energies determined by either: age – finite age of SNR (and thus of acceleration)

Patrick Slane (CfA)

$$E_{\max}(age) \sim 0.5 v_8^2 t_3 B_{\mu G} (\eta R_J)^{-1} \text{TeV} \qquad \text{High B => High E}_{\max}$$

radiative losses (synchrotron)

$$E_{\max}(loss) \sim 100 v_8 (B_{\mu G} \eta R_J)^{-1/2} \text{TeV} \qquad \text{High B => Low E}_{\max} \text{ for e}^{+-}$$

escape - scattering efficiency decreases w/ energy

$$E_{\max}(escape) \sim 20 B_{\mu G} \lambda_{17} \text{TeV} \qquad \text{High B => High E}_{\max}$$

Diffusive Shock Acceleration

see Reynolds 2008

 Maximum energies determined by either: age – finite age of SNR (and thus of acceleration)

$$E_{\rm max}(age) \sim 0.5 v_8^2 t_3 B_{\mu G} (\eta R_J)^{-1} {\rm TeV}$$

radiative losses (synchrotron)

$$E_{\text{max}}(\text{loss}) \sim 100 \text{v}_8 (B_{\mu G} \eta R_J)^{-1/2} \text{TeV}$$

escape – scattering efficiency decreases w/ energy $E_{\text{max}}(\text{escape}) \sim 20B_{\mu G}\lambda_{17}\text{TeV}$

- Particles scatter from MHD waves in background plasma
 - pre-existing, or generated
 - by streaming ions themselves
 - scattering mean-free-path

$$\lambda = \eta r_g = \eta E / eB$$

(i.e., most energetic particles have very large λ and escape

Electrons:

 large B lowers max energ due to synch. losses

Ions:

 small B lowers max energ due to inability to confine energetic particles

<u>Current observations</u> <u>suggest high B fields</u>

Patrick Slane (CfA)

t=500y, ε=36%

Patrick Slane (CfA)

γ -ray Emission from SNRs

- Neutral pion decay
 - ions accelerated by shock collide w/ ambient protons, producing pions in process: $\pi^{\circ} \rightarrow \gamma \gamma$
 - flux proportional to ambient density; SNR-clou interactions particularly likely sites
- Inverse-Compton emission
 - energetic electrons upscatter ambient photon to $\gamma\text{-ray}$ energies
 - CMB, plus local emission from dust and starlig provide seed photons

High B-field can flatten IC spectrum; low B-field can reduce E_{max} for π[°] spectrum - difficult to differentiate cases; GLAST observation crucial to combine with other λ's and dynamics

TeV Sensitivity for SNRs

• The expected $\pi \xrightarrow{o} \gamma \gamma$ flux for an SNR is

$$F(> E_{TeV}) \approx 5 \times 10^{-11} \varepsilon E_{51} d_{kpc}^{-2} n E_{TeV}^{1-\alpha}$$
 phot cm⁻² s⁻¹

where ϵ is the efficiency, α is the spectr index of the particles, and n is the ambie density (Drury et al. 1994)

- nearby SNRs should be strong TeV sources, particularly in regions of high density
- Efficient acceleration can result in higher values for I-C γ-rays
 - spectra in TeV band can constrain the emission mechanism
 - high sensitivity needed for distant SNR

(Note that efficiency can be >>0.1)

Patrick Slane (CfA)

E_{max} set by age or energy losses – observed as spectral turnover pion production depends on density
 – GLAST/TeV observations required

Patrick Slane (CfA)

Contributions from PWNe: Vela X

- Elongated hard X-ray structure extends southward of pulsar
 - clearly identified by HESS
 - this is not the pulsar jet (which is known to be directed to NW)
 - presumably relic nebula that has been disturbed by (asymmetric) passage of reverse shock
- Similar extended structures seen offset from field pulsars
 - deep TeV studies needed

VHE Emission from SNRs

	Flux _{TeV}		
Name	(cm ⁻² s ⁻¹ TeV ⁻¹)	Γ	Comments
RX J1713.7-3946	2.0x10 ⁻¹¹	2.32 +/- 0.01	G347.30.5; nonthermal X-rays
RX J0852.0-4622	1.9 x 10 ⁻¹¹	2.2 +/- 0.3	Vela Jr.; nonthermal X-rays
Cas A	1x10 ⁻¹²	2.4 +/- 0.2	Nonthermal X-ray filaments
IC443	5.8x10 ⁻¹³	3.1 +/- 0.3	PWN? SNR? MC interaction?
RCW 86	2.7x10 ⁻¹²	2.5 +/- 0.1	Nonthermal X-rays
W28	7.5x10 ⁻¹³	~2.6	MC interactions; masers
CTB 37A	8.7x10 ⁻¹³	2.3 +/- 0.1	PWN? MC interaction?
CTB 37B	6.5x10 ⁻¹³	2.65 +/- 0.19	
HESS J1834-087	3.7x10 ⁻¹²	2.5 +/- 0.2	SNR W41?
HESS J1804-216	5.2x10 ⁻¹²	2.7	SNR?
HESS J1745	2.5x10 ⁻¹²	2.7	MC interaction?
G0.9+0.1	8.1x10 ⁻¹³	2.4	PWN?

Patrick Slane (CfA)

IC443: What is the Source of Emission?

- SNR age is ~30 kyr; large diameter suggests modest shock speeds
 - probably not highly efficient accelerator at present, so <u>leptonic emission may be weak</u>
- A molecular cloud lies at the edge of the remnant
 - enhanced density provides significant target material for $\gamma\text{-rays}$ from π^0 decay

IC443: What is the Source of Emission?

- SNR age is ~30 kyr; large diameter suggests modest shock speeds
 - probably not highly efficient accelerator at present, so <u>leptonic emission may be weak</u>
- A molecular cloud lies at the edge of the remnant
 - enhanced density provides significant target material for $\gamma\text{-rays}$ from π^0 decay
- SNR contains PWN which could be a source of TeV emission
 - PWN is outside of γ -ray error circle, and X-ray tail points away from γ -ray source, so not likely candidate

TeV Unidentified Sources Worksho

Patrick Slane (CfA)

- X-ray observations reveal a nonthermal spectrum everywhere in G347.3-0.5
 - evidence for cosmic-ray acceleration
 - based on X-ray synchrotron emission, infer electron energies of ~50 TeV

• This SNR is detected directly in TeV gamma-rays, by HESS

100

80

60

40

20

0

- γ -ray morphology very similar to x-rays; suggests I-C emission
- spectrum seems to suggest π ^o-deca WHAT IS EMISSION MECHANISM?

Patrick Slane (CfA)

Modeling the Emission

- Joint analysis of radio, X-ray, and γ-ray data allow us to investigate the broad band spectrum
 - data can be accommodated by synch.
 emission in radio/X-ray and pion decay (with some IC) in γ-ray
 - however, two-zone model for electrons fits γ-rays as well, without pion-decay component
- Pion model requires dense ambient material
 - but, implied densities appear in conflict with thermal X-ray upper limits
- Origin of emission NOT YET CLEAR

Patrick Slane (CfA)

Modeling the Emission

- \bullet Joint analysis of radio, X-ray, and $\gamma\text{-ray}$ data allow us to investigate the broad band spectrum
 - data can be accommodated by synch.
 emission in radio/X-ray and pion decay (with some IC) in γ-ray
 - however, two-zone model for electrons fits γ-rays as well, without pion-decay component
- Pion model requires dense ambient material
 - but, implied densities appear in conflict with thermal X-ray upper limits
- Origin of emission NOT YET CLEAR
 <u>NEED GLAST</u>

Patrick Slane (CfA)

Modeling the Emission

Events [km⁻² yr⁻¹]

- Joint analysis of radio, X-ray, and γ-ray data allow us to investigate the broad band spectrum
 - data can be accommodated by synch.
 emission in radio/X-ray and pion decay (with some IC) in γ-ray
 - however, two-zone model for electrons fits γ-rays as well, without pion-decay component
- Pion model requires dense ambient material
 - but, implied densities appear in conflict with thermal X-ray upper limits
- Origin of emission NOT YET CLEAR
 <u>NEED GLAST</u>

or a <u>Northern IceCube</u>...

Patrick Slane (CfA)

Alvarez-Muniz & Halzen 2002 50 SNR RX J1713.7-3946 Atm. ν , $\theta_{zen} = 0^{\circ}$ 40 $\cdot \cdot \text{Atm. } \nu, \theta_{\text{zen}} = 90^{\circ}$ 30 20 10 0 500 1000 50 5000 10 100 E_{μ}^{thr} [GeV]

Aside: Evidence for CR Ion Acceleration

 Warren et al. 2005
 Efficient particle acceleration in SNRs affects dynamics of shock

- for given age, FS is closer to CD and RS with efficient CR production
- This is observed in Tycho's SNR
 - "direct" evidence of CR ion acceleration

Patrick Slane (CfA)

Aside: Evidence for CR Ion Acceleration

 Warren et al. 2005
 Efficient particle acceleration in SNRs affects dynamics of shock

- for given age, FS is closer to CD and RS with efficient CR production
- This is observed in Tycho's SNR
 - "direct" evidence of CR ion acceleration

Patrick Slane (CfA)

Aside: Evidence for CR Ion Acceleration Ν Ellison et al. 2007 Tycho 10¹⁰ п_н=0.1 ст E_{en}=1.4 10⁵¹ era $B_0 = 15 \mu G$ t_{snr}=500 yr T_{plasma} [K] 10⁹ RS 10⁸ ES 3.5 4.5 5 4 Radius [pc] SW Contact CD/BW Discontinuity RS/CD ratio of radii 90 80 80 Warren et al. 2005 • Efficient particle acceleration in SNRs affects dynamics of shock RS/BW - for given age, FS is closer to CD and RS with efficient CR production • This is observed in Tycho's SNR 0.4 0.1 - "direct" evidence of CR ion acceleration Warren et al. 2005 TeV Unidentified Sources Workshop - PSU (4-5 June 2008) Patrick Slane (CfA)

Thin Filaments: B Amplification?

- Thin nonthermal X-ray filaments are now observed in many SNRs, including SN 1006, Cas A, Kepler, Tycho, RX J1713, and others
 - observed drop in synchrotron emissivity is too rapid to be the result of adiabatic expansion
- Vink & Laming (2003) and others argue that this suggests large radiative losses in a strong magnetic fie

$$B \sim 200 \mathrm{v}_8^{2/3} \left(\frac{l}{0.01 pc}\right)^{-2/3} \mu G$$

- Diffusion length upstream appears to be very small as well (Bamba et al. 2003)
 - we don't see a "halo" of synchrotron emission in the upstream region $1 \sqrt{1 \frac{1}{2}}$

$$l_D \sim \sqrt{\kappa t_{syn}} \propto B^{-3/2}$$

• Alternatively, Pohl et al (2005) argue that field itself confined to small filaments due to small damping scale

TeV Unidentified Sources Workshop - PSU (4-5 June 2008)

Patrick Slane (CfA)

 Notion still in question; there are other ways of getting such variations (e.g. motion across compact magnetic filaments); more investigation needed

Patrick Slane (CfA)

Time Variations in Cas A

Patnaude & Fesen 20

- Cas A is expanding rapidly
- Significant brightness variations are seen on timescales of years
 - ejecta knots seen lighting up as reverse shock crosses
- Variability seen in high energy continuum as well
 - similar to results from RX J1713.7-3946
- Uchiyma & Aharonian (2008) identify variations along region of inner shell, suggesting particle accelerations at reverse shock
 - many more observations needed to understand this!

Patrick Slane (CfA)

Summary

- SNRs are efficient accelerators of cosmic ray electrons and ions
 - X-ray spectra reveal multi-TeV electrons
 - X-ray dynamics indicated strong hadronic component
- Several lines of argument lead to conclusion that the magnetic field is amplified to large values in shock
 - thin filaments
 - rapid variability
 - ==> this could allow acceleration of hadrons to ~knee
- Other explanations for above exist, without large B
 - further study needed
 - GeV/TeV studies will help resolve question of hadron acceleration
 - neutrino observations will weigh in on this as well