Neutrino Observations of TeV Objects

Tyce DeYoung

Department of Physics and Center for Particle Astrophysics Penn State University

Workshop on Unidentified TeV Objects Penn State University June 5, 2008

- Neutrino Astronomy
- Current State of the Art: AMANDA Point Source Search (2000–07)
- •(Near) Future Work
 - -Multimessenger Observations
 - Deep Core and Galactic Objects

Neutrino Emission

Supernova Remnants

Gamma Ray Bursts

Active Galactic Nuclei

Hadronic and Electromagnetic Explanations for Gamma Ray Observations

Neutrino Telescopes

• Neutrinos interact in or near the detector

- O(km) muons from ν_{μ} (CC)
- O(10 m) particle cascades from v_e , low energy v_{τ} , and NC interactions
- Cherenkov radiation detected by optical sensors

IceCube

- 4800 DOMs on 80 strings
- 160 Ice-Cherenkov tank surface array (IceTop)
- Surrounds existing AMANDA detector (677 OMs)
- 40 strings deployed in 4 construction seasons

Digital Optical Module (DOM)

Flavor Identification

Double Bang": One of several tau signatures : lollipop, inverted lollipop, etc...

Signals and Backgrounds

Muon Field of View

- TeV: look down to avoid atmospheric muons
- PeV: Earth opaque, look horizontally
- EeV: Can look above horizon – atmospherics have softer spectrum

Cascades: 4π , except for absorption at high energies (with muons vetoed!)

AMANDA-II Data Set

1996

AMANDA-B operations results from 4 string, 10 string and 13 string phases

AMANDA-II complete

1999

Original DAQ decommissioned AMANDA integrated into IceCube

Atmospheric Neutrinos

lceCube

- Statistical unfolding of atmospheric muon neutrino spectrum
 - Based on observed muon energies at detector
- Consistent with theoretical models
- Limit placed on possible high energy component
 - Would appear as excess above expected atmospheric flux

– 95 of 100 background maps (data randomized in RA) have a point with significance $\geq 3.38\sigma$

1 8 5 5

• Energy response shifted to higher energies than for gamma rays

Source Catalog Search

• List of 26 sources selected a priori

Source	μ ₉₀	P-value
Crab Nebula	4.47	0.10
MGRO J2019+37	4.75	0.077
Mkn 421	1.26	0.82
Mkn 501	3.56	0.22
LS I +61 303	7.21	0.033
Geminga	6.07	0.0086
1ES 1959+650	3.38	0.44
M87	2.18	0.43
Cyg X-1	2.00	0.57

Preliminary

90% C.L. limits of $E^2\Phi < \mu_{90} \ge 10^{-11} \text{ TeV cm}^{-2} \text{ s}^{-1}$

Upward fluctuations: LS I +61 303 Geminga MGRO J2019+37

Downward fluctuations: Mkn 421

probability of $p \le 0.0086$ for at least one of 26 sources is 20%

High Energy Neutrino Source Fluxes

Multimessenger Observations

Swift, GLAST, HETE, etc.)

γ, v

Timing/localization from satellites & ground-based detectors for neutrino searches

IceCube

Milagro,

HAWC

VERITAS,

MAGIC,

HESS, etc.

A Distant GRB, AGN, etc.

Observations in the direction of 1ES 1959+650

An interesting coincidence with a gamma ray flare:

3.7 atmospheric neutrino events expected between 2000 and 2003.5 events observed, incl. 3 in 66 days in 2002, during active period of source

Orphan Flares

- Seem to suggest acceleration of hadrons
 - But not impossible in EM scenarios

In electromagnetic acceleration scenarios, the X-ray synchrotron photons are the seeds for the gamma rays

- Only observed serendipitously with current instruments
 - Are these common? Only specific objects? Spectral clues?
 - Need a wide field-of-view TeV gamma ray telescope

Particle Generation in AGN Jets

Swift, GLAST, HETE, etc.) /

γ, v

Timing/localization from satellites & ground-based detectors for neutrino searches

HAW

IceCube

MAGIC

IceCube alerts to TeV ACTs, robotic optical telescopes?

ROTSE,

DT

A Distant GRB

Neutrino-Triggered ToO's

- lceCube
 - Search for "choked" jets inside supernovae (Mészáros & Waxman)
 - Up to 30 events in 10 s for a SN at 10 Mpc (Ando & Beacom)
 - Look for correlated neutrino events in IceCube, then follow up with robotic optical telese

up with robotic optical telescopes looking for supernovae (Kowalski & Mohr)

• Expect ~10 neutrino doublets (w/in 2°-3°) and ~10 high energy neutrinos ($E_{\mu}>$ 100 TeV) per year

Galactic Sources?

- If cosmic ray muons can be beaten down below the atmospheric neutrino background, can look up at the Southern sky and Galactic center region
 - Demand events with ν -N interaction vertex contained in detector
 - Rough estimate of fraction of starting tracks:

$$\epsilon(E) \sim \frac{L_{detector}}{R_{\mu}(E)} \simeq \frac{1 \text{ km}}{\frac{1}{b} \ln\left(\frac{bE}{a} + 1\right)}$$

where

$$-dE_{\mu}/dx \simeq a + b E_{\mu}$$
$$a \simeq 0.2 \text{ GeV/m}$$
$$b \simeq 3.4 \times 10^{-4} \text{ m}^{-1}$$

also account for

 $\langle y \rangle \sim 0.42$ at low E (average over ${f v}, {f ar v})$

IceCube

- Most events below $E_{\nu} \approx 1 \text{ TeV}$ are contained
 - Some events up to ~10 TeV (comparable to typical analysis efficiency)

IceCube Deep Core

- Extend IceCube sensitivity to neutrinos with energies below a few hundred GeV
 - Six strings with 60
 high-QE PMTs each
 - Use very clear ice at bottom of IceCube
 (λ_{att} ~ 40-50 m, cf. 20 m)
 - IceCube active veto
 - Reduce cosmic ray muons to atm. ν level (factor 10⁻⁶)

IceCube Deep Core

- Extend IceCube sensitivity to neutrinos with energies below a few hundred GeV
 - Six strings with 60
 high-QE PMTs each
 - Use very clear ice at bottom of IceCube
 (λ_{att} ~ 40-50 m, cf. 20 m)
 - IceCube active veto
 - Reduce cosmic ray muons to atm. ν level (factor 10⁻⁶)

IceCube Deep Core

- Extend IceCube sensitivity with energy few hundred
 - Six strings
 high-QE I
 - Use very bottom of (λ_{att} ~ 40-
 - IceCube active veto
 - Reduce cosmic ray muons to atm. ν level (factor 10⁻⁶)

PENNSTATE

2006/7

D BU SUC 4

IceCube Baseline

Including Deep Core (renormalized)

vN vertex positions for simulated v_{μ} on E⁻² from 5 GeV–50 TeV

Low Energy with Deep Core

- \bullet Large increase in effective volume for $E_{\nu} < 100 \text{ GeV}$
 - WIMPs, southern sky, atmospheric neutrino oscillations
 - Threshold down to 10-20 GeV

PENNSTATE

Tyce DeYoung

Low Energy with Deep Core

- \bullet Large increase in effective volume for $E_{\nu} < 100 \text{ GeV}$
 - WIMPs, southern sky, atmospheric neutrino oscillations
 - Threshold down to 10-20 GeV

Conclusions

- No neutrino sources yet
- Rapid increases in sensitivity in next few years
- Multimessenger observations can give a large advantage
 - IceCube analysis tailored to published X-ray, gamma ray observations
 - IceCube-triggered ToO's
- Deep Core coming open up the southern sky?

